偏差値68の校内実力模試で出題された問題|整式の余りを2通りで。

とある私立高校の実力模試で出題された問題です!
単元をまたぐ良問ですね!しっかり完答できましたか?
高2向けに出たみたいですが、2通りの方法がわかれば
より数学の面白さが伝わる問題だったかなと思います。
整数問題の全パターン解説はこちら
• 【整数問題】入試頻出解法を”4時間で”全パタ...
PASSLABOの数学特化チャンネル開講です!!
MathLABO〜東大発!「みんなで作る」数学ベスト良問集
ということで、TwitterやLINE、KZreadのコメントなどで
現在進行形で視聴者さんから頂いた良問やリクエストを中心に解説していきます。
数学関連のLIVEやPASSLABOではできないようなことも、リクエストも見ながらどんどん実験していきますので、ぜひみんなで一緒に楽しみましょう!
~~~~~~~~
■MathLABO〜東大発!「みんなでつくる」数学ベスト良問集〜
チャンネル登録はこちらから
→ / @mathlabo
■解説して欲しい良問を見つけた方はこちらまで
→ lin.ee/v9sRM5r
(勉強法や質問相談はLINE LIVEにて配信予定!!)
■解答解説のノート画像は公式Twitterから
→ / todai_igakubu
リクエストや企画はこちらから募集してます!
forms.gle/hYKGAnRz5jhgxjQo8
======
【君のコメントが、動画に反映されるかも!】
問題の解説希望やリクエストあれば、好きなだけ載せてください。
1つ1つチェックして、役立つものは動画にしていきますね^ ^
===========
■PASSLABOメンバー情報
「1」宇佐見すばる
→ / todai_igakubu
→ note.mu/pfsbr123/n/nb6fe7782cef8
「2」くまたん
東大文一1点落ち?/PASSLABO癒しキャラ
→ / passlabo3
→ note.mu/pfsbr123/n/n429b06b1d9b4
===========
#MathLABO(マスラボ)
#みんなでつくる数学良問集
#リクエストは概要欄から
朝6時に毎日投稿!
一緒に動画で朝活しよう

Пікірлер: 101

  • @takapyoon706
    @takapyoon7062 жыл бұрын

    解説中の計算ミスを「みんな気をつけて」に置換w

  • @ans0kuk0u3

    @ans0kuk0u3

    Жыл бұрын

    不注意に注意ね

  • @user-uv9wj9oq9u
    @user-uv9wj9oq9u2 жыл бұрын

    解法1は、よく余りをさらに(x+1)^2で割ったりするのを見かけるけど、微分が一番手っ取り早くて汎用性が高いと思いました!

  • @napyfishy1701
    @napyfishy17012 жыл бұрын

    ミスすらも教訓にしていく男

  • @koutenshi69gou
    @koutenshi69gou2 жыл бұрын

    微分が利用できる理由がよくわからないというコメントをいくつか見かけましたので、お役に立つかわかりませんが、この場をお借りして少し書かせていただきます。 微分を使う方法は大本は以下の定理に基づいています。 「定理:整式f(x)がx=αを3重解としてもつ為の必要十分条件は、f(α)=f‘(α)=f‘‘(α)=0が成り立つことである。」 ちなみに上記の定理の証明で用いた方法を帰納的に操作して、N重解バージョンに一般化することができます。2重解なら一回微分までの成立でOKです。必要であれば、上の定理の証明も紹介します。 さて、この定理を(x-α)^3で割ったときの余りを求めるのにどう使うのかというと、次のように考えます。 この問題は(x+1)^3で割ったときの余りを求めるので、以下の式が成り立ちます。 x^30=(x+1)^3×Q(x)+ax^2+bx+c(ここで、Q(X)は商、2次式部分は求める余り) ここで、f(x)=x^30ーax^2ーbxーc とおくと、f(x)=(x+1)^3×Q(x)となり、f(x)はx=-1を3重解としてもつと考えられます。 この、f(x)に対して、上記の定理を適用するために、微分をすることになります。 一応、これが正式な定理の利用方法なのですが、導関数の性質を考えると、余り部分を左辺に移項しなかったとしても、計算上は全く変わりありません。そこで、(x-α)^nで割った余りを求めるときには、条件式を増やすために、とりあえず微分するという流れになっているというわけです。

  • @user-yk1fk8wr3m

    @user-yk1fk8wr3m

    4 ай бұрын

    初めて知った助かります

  • @user-we3cv6he3h
    @user-we3cv6he3h2 жыл бұрын

    今日も良問ありがとうございます!!

  • @user-qy6ic5iv8r
    @user-qy6ic5iv8r2 жыл бұрын

    二項定理の解法良いねぇ

  • @user-xy6yw7tw1o
    @user-xy6yw7tw1o2 жыл бұрын

    後半の方法で解いたので、前半を見た時に「しまった。計算ミスをした」と思いましたが、後半を見て安心しました。

  • @user-db9bi7mb2j
    @user-db9bi7mb2j2 жыл бұрын

    解法1で自分の答案と答え違って まじか!って思ったけど、解法2で安心した笑 二項定理は慣れるとかなり便利ですよね。多項式具体的に列挙できるので。 (数学得意すぎる方の考えは分からないので、あくまで個人の感想です!)

  • @cheva748
    @cheva748 Жыл бұрын

    解法2は初見で思いつく自信全くないけど気づけたらめっちゃ気持ちよさそう。

  • @user-uv7vm6dk4f
    @user-uv7vm6dk4f2 жыл бұрын

    恒等式は右と左が同じ関数だから微分しても同じ関数のはずx^2=x^2→2x=2x いろんなのに使う気がする

  • @diary2854
    @diary28542 жыл бұрын

    微分の考え方はテイラー展開の理論に用いられていますね。

  • @jr.691
    @jr.6912 жыл бұрын

    二項定理って影薄いけど重いですよね…

  • @abcdcho

    @abcdcho

    10 ай бұрын

    マジこれに尽きる

  • @user-gd9ln4gw3z
    @user-gd9ln4gw3z2 жыл бұрын

    覚醒講義式でいくならテイラー展開

  • @user-ph8gs6nc8m
    @user-ph8gs6nc8m2 жыл бұрын

    今日も良い問題でした!特に、微分、二項定理を覚えた高校生は解けてほしいですね。 自分は、最初解法2を思いつき、最後の2次式以下がまんま答えだな、というのは直ぐ分かり、解法1は余りを設定したところで手が止まり、動画視聴と同時に微分だということに気付きました! コメ欄の「通りすがりの数学者」さんが、余りをa(x+1)^2+b(x+1)+cと置く方が簡単とありますが、これは、素晴らしい着眼だと思います。細かいかもしれませんが、こういう細かいことを知っている、気付く、というのが数学は大事だと感じます。 (現役のときに知りたかった・・・w)

  • @user-ei4de6pl4i
    @user-ei4de6pl4i2 жыл бұрын

    楽しいです

  • @korp0620
    @korp06202 жыл бұрын

    解法3 ひたすら筆算

  • @johnyuya1092

    @johnyuya1092

    2 жыл бұрын

    嫌いじゃない

  • @strmandola5484
    @strmandola54842 жыл бұрын

    解法2で得られた式を微分してみるとわかりやすいと思います

  • @user-pd2bt8pt4q
    @user-pd2bt8pt4q2 жыл бұрын

    二乗以上の冪乗の場合は微分が有効であとは割る式の次数より余りの字数の方が小さいって設定してやるのと二項展開で3通りかな?

  • @user-iu5ie4fb7v
    @user-iu5ie4fb7v2 жыл бұрын

    ωv(3)=1として、Xにωを代入する解答もありですかね?

  • @YouTubeAIYAIYAI
    @YouTubeAIYAIYAI2 жыл бұрын

    備忘録70V" 【 解法1 ~多重剰余定理 ( 微分法の応用 ) 】 x³⁰= ( x+1 )³・P(x) +ax²+bx+c ・・・① とおくことができる。 両辺微分を繰り返して、 30 x²⁹= ( x+1 )²・Q(x) +2ax+b ・・・②, 30・29 x²⁸= ( x+1 )¹・R(x) +2a ・・・③ x=-1 を代入して、 1= a-b+c ・・・①', -30= -2a+b ・・・②', 30・29= 2a ・・・③' 以上より、 a= 435, b= 840, c= 406 よって、( 求める余り )= 435x²+840x+406 ■ 【 解法2 ~二項定理より、】 x³⁰= { ( x+1 ) -1 }³⁰ = ( x+1 )³・P(x) +30C28( x+1 )² -30C29( x+1 )¹ +30C30 ■

  • @bobat5132
    @bobat51322 жыл бұрын

    微分は一対一対応でやって、変形は、今日標問でやったんで出来ました!

  • @user-mp9zo5hz2l
    @user-mp9zo5hz2l2 жыл бұрын

    微分パターンは知らなかった 今度使お

  • @user-he8og6te3l
    @user-he8og6te3l2 жыл бұрын

    今は試験範囲が決まっている高1と高2の夏休みや冬休み明けのテストは課題テストと呼ぶ高校が増えました。

  • @user-hm9he8mj9n
    @user-hm9he8mj9n2 жыл бұрын

    二項定理習った頃は何にどう使えばいいか全然分からんかったなあw

  • @user-gr9ht7fm6n
    @user-gr9ht7fm6n2 жыл бұрын

    0:15 小泉構文()

  • @smbspoon-me-baby
    @smbspoon-me-baby2 жыл бұрын

    解法1は脳死で他に何も方針が浮かばない時に用いるべきで、計算ミスも誘発しやすくなる。この程度の問題なら解法2で解きたい。

  • @choco5924
    @choco59242 жыл бұрын

    x+1=tとおいて二項定理で一発。1分くらいかな?

  • @user-cr7rq8pk9q
    @user-cr7rq8pk9q7 ай бұрын

    x+1=tとおくとやりやすくなりますね!

  • @user-lh6vk8xl8j
    @user-lh6vk8xl8j2 жыл бұрын

    解放1で解いた人です。 解放2を見て感動しました。

  • @kazumadayo9780
    @kazumadayo97802 жыл бұрын

    (t-1)^30をt^3で割ったあまりに t = x+1を代入しちゃダメかな? これなら二項定理で簡単に解ける

  • @user-xb5jw2gc3e
    @user-xb5jw2gc3e2 жыл бұрын

    解法2は標問で死ぬほどやったから自然とできた〜 けど2通りでやれって言われて解法1でやるのは嫌やなあ笑笑

  • @nightstay738
    @nightstay7387 ай бұрын

    Focus Goldに二項定理用いる問題ありましたね

  • @user-xk6es4ni5f
    @user-xk6es4ni5f2 жыл бұрын

    (1)は河合か東進かのテクストに載ってた(同じ解き方が)

  • @LeeLee-te6td
    @LeeLee-te6td2 жыл бұрын

    ミスしてるの見て、 やはり彼も人間だなって思った

  • @user-ht2lu8zw8o
    @user-ht2lu8zw8o2 жыл бұрын

    やさ理で後者のやり方載ってたな〜w 忘れてた!!

  • @user-yc3ei9oo4n
    @user-yc3ei9oo4n Жыл бұрын

    自分で解いて答え間違えてるやんと思いましたが 最終的には訂正されて納得しました!わら

  • @onigiriponko2_88
    @onigiriponko2_882 жыл бұрын

    微分、二項定理、それって美味しいの?🍠 modじゃ無理なんですか⁇😭

  • @user-uy3zr1ui9z
    @user-uy3zr1ui9z Жыл бұрын

    解法1のcは466ではなく406ね。整数問題では二項定理を使うケースが多い。

  • @user-mv6de3hi8q
    @user-mv6de3hi8q Жыл бұрын

    文系プラチカと同じ問題だったから解けた

  • @study_math
    @study_math2 жыл бұрын

    x+1=tと置いたが、実質解法2と同じ

  • @user-we4kl8dc7e
    @user-we4kl8dc7e2 жыл бұрын

    二項定理なんて習った記憶がないのだが・・・ こんなのあるんだな。

  • @user-ki6rh7hv8q
    @user-ki6rh7hv8q2 жыл бұрын

    x+1=tでもできるね 俺は微分するけど

  • @hayatohey8156
    @hayatohey8156 Жыл бұрын

    編集少なめで見やすいです カンタロウ式

  • @YU-sx1dc
    @YU-sx1dc2 жыл бұрын

    この問題解けました

  • @gozytang
    @gozytang2 жыл бұрын

    9:12 ここって答案にどうやって書けばいいですか? 下線使っていいんですか?

  • @user-of4do1by6g
    @user-of4do1by6g2 жыл бұрын

    問題  1以上3500以下の整数xのうち、x^3+3xが3500で割り切れるものの個数を求めよ。 京都大学数学系の院試で数学Aの範囲で解ける問題です。難しい問題にチャレンジしてみたい人は挑戦してみてください。

  • @user-os3pw2yq4q

    @user-os3pw2yq4q

    2 жыл бұрын

    最後高校数学でやらないと思うんですけど面倒だったので使いました

  • @user-mp3wj5xe1f

    @user-mp3wj5xe1f

    2 жыл бұрын

    説明下手だけど許して 間違ってるかもしれないけど許して 3500の倍数ってことは [①2²の倍数]かつ[②5³の倍数]かつ[③7の倍数]ということ。 ①のとき x(x²+3)は4の倍数で、xとx²+3は偶奇が異なるため、 xを4で割った余りは0,1,3でないといけない。 ②のとき x(x²+3)は125の倍数で、xとx²+3は同時に5の倍数にはならない。 よって、次の2つのケースがある。 (1)xが125の倍数 (2)x²+3が125の倍数  ←(このケースは、そもそもx²+3が5の倍数にならない              から実はあり得ない。) xが125の倍数でないといけないことが分かる。 ③のとき x(x²+3)は7の倍数になる。(←ここまで来たら調べ上げた方が速い)  x mod 7 0  1  2  3  4  5  6 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ x(x²+3) mod 7 0  4  0  1  6  0  3 xを7で割った余りは0,2,5でないといけない。 よって、積の法則より、求める個数は 3×28×3= V 252個 V

  • @user-sw7qm4ht6q
    @user-sw7qm4ht6qАй бұрын

    ああ、別解だ。 X+1をYとおいて軸変換(平行移動)して二項展開。 (Y-1)^80をY^3で割ったあまり。 まあやっていることは解析でも同じ(計算過程も)なんだけどね。

  • @Sukosuko-no-suchiko-iLoveu
    @Sukosuko-no-suchiko-iLoveu Жыл бұрын

    やさ理は偉大

  • @user-oo2qj6bv3q
    @user-oo2qj6bv3q Жыл бұрын

    これ{(x-1)+1}にして展開したら二項定理の符号は気をつけずに済むのか

  • @mathseeker2718
    @mathseeker27182 жыл бұрын

    解法1で、余りの係数をan、bn、cnとして漸化式を立てましたが、4項間漸化式になり、解けませんでした😅

  • @hideo_787
    @hideo_7872 жыл бұрын

    微分かー。知らなかったな 引きだしが1つ増えました。

  • @chopin_taiko
    @chopin_taiko2 жыл бұрын

    逆に解法1の方思いつかなかった

  • @tt-ho6iw
    @tt-ho6iw Жыл бұрын

    二通りといわれたら、片方は筆算した振りになっちゃうな、、、

  • @uiwetughwtuw
    @uiwetughwtuw4 ай бұрын

    間違ってオッケイ?って聞くの草

  • @yatchism
    @yatchism2 жыл бұрын

    計算ミスと見せかけて視聴者に教えたい事がある、さすがです。うちの娘に、東大生でもゴリ押し計算ではミスる事もある、と教えます。

  • @user-ib5hp1ee4c
    @user-ib5hp1ee4c Жыл бұрын

    いいかお前ら!!! 割り算はなぁ、掛け算だ!!!!!!! っていう先生の声が聞こえる……笑

  • @user-zr8jc4bi3e
    @user-zr8jc4bi3e2 жыл бұрын

    自分のミス反面教師にしてておもろい笑

  • @user-cm5qx6xy1r
    @user-cm5qx6xy1r2 жыл бұрын

    めっちゃおもろい問題だと思う。こういうのを良問と言うんだろうな。

  • @Lookingforwardto227
    @Lookingforwardto2272 жыл бұрын

    二項定理きもちいい

  • @user-zv6my1oj7d
    @user-zv6my1oj7d2 жыл бұрын

    やさ理チックな解法だよ

  • @the7jump
    @the7jump2 жыл бұрын

    これいつも疑問に思っているのですが、微分しても等式は常に成り立つのでしょうか? 定数が消えた分だけズレてしまって等式が成立しない気がします。

  • @user-qp1ot8ow2j

    @user-qp1ot8ow2j

    2 жыл бұрын

    微分したら必要条件になるんやね、でも一つ前の段階で十分条件になってる

  • @anti_simulacre7907

    @anti_simulacre7907

    2 жыл бұрын

    恒等式は微分しても恒等式。

  • @the7jump

    @the7jump

    2 жыл бұрын

    返信ありがとうございます。また、言葉足らずですみません。感覚的にはわかるのですが、自明なのか証明できるのかという意味でした。 ε-δ論法というものを使う必要があるそうですが、結果「成立する」でよかったです。

  • @user-pu7hb7dl4e

    @user-pu7hb7dl4e

    16 күн бұрын

    いやいやそんなもん不要だから. 微分可能な関数 f (x), g(x)があって, f(x)=g(x) (恒等的に) ⇒ f'(x)=g’(x) (恒等的に) を示すには g(x)=0の場合を示せば十分 (f⁻gをfと見れ) 「f(x)=0 (恒等的に) ⇒ f'(x)=0 (恒等的に) 」 これは微分式の定義を考えれば明らか.

  • @kiichiokada9973
    @kiichiokada99732 жыл бұрын

    何で微分するのか分からなかったんですが、あくまでa-b+c=1以外の等式を作るための手段の1つってことですか?

  • @anti_simulacre7907

    @anti_simulacre7907

    2 жыл бұрын

    これ、本当は大学の微積分で出てくるような内容なので、大学入試レベルであまり深入りしないほうが良いと思うんですけど、今の段階では恒等式をいくつか作るため、というくらいの理解でよろしいかと思います。(私も詳しくない。)

  • @kingofm2010

    @kingofm2010

    2 жыл бұрын

    割る数式が本問題のように重解を持つ場合、微分をすることで割る数式の次数を下げても元々の数式の解を代入することによって剰余式部分のみを残す(Q(x)の項を消せる)からですね。この手の重解出現時の微分による次数下げテクニックは数学において随所に登場してくる。。。

  • @anti_simulacre7907

    @anti_simulacre7907

    2 жыл бұрын

    @@kingofm2010 さん 勉強になります。ありがとうございます。

  • @user-ok7iu1uu1g
    @user-ok7iu1uu1g10 ай бұрын

    i^2代入すればいけるくね?

  • @IamReaa
    @IamReaa Жыл бұрын

    やっぱ微分安牌ですね

  • @user-ur2qg1uh7q
    @user-ur2qg1uh7q2 жыл бұрын

    どうして微分がこの問題に応用できるのでしょうか?習いたてでよくわかっていません、誰かー教えてください

  • @kin3kin13
    @kin3kin132 жыл бұрын

    微分すごい

  • @user-dz7jn4lb5o
    @user-dz7jn4lb5o2 жыл бұрын

    高 2駿台で出たな とけんかった

  • @anti_simulacre7907
    @anti_simulacre79072 жыл бұрын

    前半はテイラー展開になるのかな? 後半は鈴木貫太郎大先生が得意なヤツっぽい。

  • @mizukik.177

    @mizukik.177

    2 жыл бұрын

    どちらかというと後半がTaylor展開と関連します. このような問題でTaylor展開をするモチベーションは(g(x)で割るとして)g(x)の多項式を作り出すことですから,二項定理を利用するモチベーションと同じです. Taylor展開の係数と二項係数にも関係がありますし.

  • @anti_simulacre7907

    @anti_simulacre7907

    2 жыл бұрын

    @@mizukik.177 さん ありがとうございます。勉強になります。

  • @user-xk8ln6it5w
    @user-xk8ln6it5w2 жыл бұрын

    びぶんつよ

  • @user-bn7ql1sb8x
    @user-bn7ql1sb8x Жыл бұрын

    最初の解法で、わざと計算ミスをしていた説。論拠:後で比較できるように、計算結果をわざわざ右下にメモしておいた

  • @user-lz2hr8or3y
    @user-lz2hr8or3y2 жыл бұрын

    なんで①と②の式にx=-1を代入すると違う条件式が出てくるんですか? よくある、同じ式出てきちゃった状態になると思ったんですが

  • @yoheitamura6760
    @yoheitamura67602 жыл бұрын

    nを自然数とする。n³をn²+1で割った商と余りを求めよ。 解答 商n 余り -n は誤り。

  • @user-hi4xf5cc3x
    @user-hi4xf5cc3x2 жыл бұрын

    解法1しかわからなかった(笑)

  • @user-xc7tj3cl1s
    @user-xc7tj3cl1s6 ай бұрын

    x+1=kと置換したら自明

  • @itsuki_death
    @itsuki_death2 жыл бұрын

    focusの例題レベルやん(笑)

  • @user-oc6qt7oo4j
    @user-oc6qt7oo4j2 жыл бұрын

    一対一やったからよゆー

  • @user-ik9xb7pj2f
    @user-ik9xb7pj2f2 жыл бұрын

    解法2ばっか使ってたら解法1のやり方忘れてたwww

  • @user-tz8xp1xv3w
    @user-tz8xp1xv3w2 жыл бұрын

    解けた人は解けたけど、解けなかった人は解けなかったってなんかおもろいな

  • @Sandra_4869
    @Sandra_4869 Жыл бұрын

    脳死で微分しか思いつかんよ笑

  • @user-re1fg4nj7v
    @user-re1fg4nj7v2 жыл бұрын

    二項と割り算か、くそ

  • @naoh22000
    @naoh22000Ай бұрын

    ハイレベルな学校

  • @lilly832
    @lilly8325 ай бұрын

    x=-1で割る数が0になるのになんでx=-1を代入していいんですか?

  • @JohnnieFK
    @JohnnieFK2 жыл бұрын

    うーん、メカウロ!

  • @user-ng5wg6pw3j
    @user-ng5wg6pw3j2 жыл бұрын

    受験難易度的には普通ですね

  • @irritating4373
    @irritating4373 Жыл бұрын

    クソ簡単