How do you detect a neutrino?

Ғылым және технология

The elusive neutrino is the most difficult to detect of the particles of the standard model. However the story is more complex than that. When a neutrino actually interacts, it is easy to detect. However neutrinos interact only rarely. In this video, Fermilab’s Dr. Don Lincoln explains all of the trials and tribulations of neutrino hunters.
fnal.gov/dune

Пікірлер: 621

  • @papa_xan
    @papa_xan5 жыл бұрын

    I called my work and told them I quit because I'm now a neutrino detection expert. They were surprisingly unimpressed.

  • @tabaks

    @tabaks

    5 жыл бұрын

    @Papa Xan, get used to it. No one here is impressed, either.

  • @constpegasus

    @constpegasus

    5 жыл бұрын

    Papa Xan I believe you. Waiting for your book to come out.

  • @michaelsommers2356

    @michaelsommers2356

    5 жыл бұрын

    If they aren't impressed, just oscillate into another kind of expert.

  • @bogadu

    @bogadu

    5 жыл бұрын

    According to the Heisenberg uncertainty principle it is extremely unlikely to be impressed by this….. but not impossible.

  • @mdunkman

    @mdunkman

    5 жыл бұрын

    I got my PhD measuring neutrino oscillation parameters a fee years ago; the job market is very tough. I’d strongly recommend other careers.

  • @chrisfromsouthaus2735
    @chrisfromsouthaus27355 жыл бұрын

    My youngest brother must be a neutrino. He very rarely interacts.

  • @Ii-fo8pq

    @Ii-fo8pq

    3 жыл бұрын

    😂😂

  • @marinojames8564

    @marinojames8564

    3 жыл бұрын

    Ik someone who’s in the same situation as you lol

  • @x_gosie

    @x_gosie

    3 жыл бұрын

    Your brother is autistic.

  • @static7793

    @static7793

    2 жыл бұрын

    @@x_gosie wha- dude...

  • @dougroling7303

    @dougroling7303

    2 жыл бұрын

    Ba doo pa 👏⚡️🌟

  • @andrei-un3yr
    @andrei-un3yr4 жыл бұрын

    If I had someone to explain physics to me like dr Don, I would have most likely picked a career in physics. I can only imagine how many people like me, because of poor quality education in school, didn't have the chance to discover what they like.

  • @johnopalko5223
    @johnopalko52235 жыл бұрын

    He says, dismissively, "It's an E=mc^2 kind of thing." You gotta love physicists.

  • @battleforevermore
    @battleforevermore5 жыл бұрын

    How do you detect a neutrino? You don't, neutrino detects you.

  • @MikeRosoftJH

    @MikeRosoftJH

    5 жыл бұрын

    And it's pretty bad at detecting you (or anything else for that matter).

  • @justagenosfan

    @justagenosfan

    3 жыл бұрын

    @@MikeRosoftJH grandpatrino

  • @QDWhite
    @QDWhite5 жыл бұрын

    Virtual particle: High five! Real particle: Nah Virtual particle: Oh, uh...that’s cool. *disappears in shame*

  • @joshuaentwistle960
    @joshuaentwistle9605 жыл бұрын

    I have a question... did anyone remember Uli's goodbye cake? Good work, Dr Don!

  • @nathanrocks2562
    @nathanrocks25624 жыл бұрын

    This channel has immense replay value. 👍

  • @thiagoabsc
    @thiagoabsc4 жыл бұрын

    As always, great video. Please, never Stopp with this initiative!

  • @edmund3504
    @edmund35045 жыл бұрын

    every time I watch your videos, I get more and more excited to learn more about physics. I can't wait to start college in the fall. keep the videos coming Doc!

  • @Trident_Euclid

    @Trident_Euclid

    5 жыл бұрын

    Good luck in your studies.

  • @paulmichaelfreedman8334
    @paulmichaelfreedman83345 жыл бұрын

    What blows my mind is that a neutrino with a mass of a few electronvolts can emit a particle with more than 1,000,000,000 times it's own mass.

  • @tanmoydutta5846

    @tanmoydutta5846

    5 жыл бұрын

    That's particle physics and Quantum weirdness ,dude

  • @paulmichaelfreedman8334

    @paulmichaelfreedman8334

    5 жыл бұрын

    @@tanmoydutta5846 Du-uh!

  • @paulmichaelfreedman8334

    @paulmichaelfreedman8334

    5 жыл бұрын

    @Scott I think i got it now, the neutrino emits a very light weak boson, one of those extremely rare ones, which then smashes a nucleus.

  • @paulmichaelfreedman8334

    @paulmichaelfreedman8334

    5 жыл бұрын

    @@jitteryjet7525 in the explanation Dr. Don does not say that it emits a virtual particle. It emits a real particle. Furthermore, I'm not sure virtual particles can smash anything. Because it's virtual, it's not actually there.

  • @drdon5205

    @drdon5205

    5 жыл бұрын

    Yes, the particle is virtual. Most virtual particles don't interact, but some do. This is one of those cases.

  • @michaelglynn2638
    @michaelglynn26385 жыл бұрын

    I'm not qualified to comment on such matters, but that was both fascinating and understandable! Thank you.

  • @bogadu

    @bogadu

    5 жыл бұрын

    @@stevenutter3614 lol! As we white People tend to put it, - you, sir, are correct in that assssement.

  • @filthyfilter2798
    @filthyfilter27985 жыл бұрын

    Very nice and simplified explanation plus amazing illustrations! Please keep it going! You are amongst my teachers

  • @hamentaschen
    @hamentaschen5 жыл бұрын

    Seriously Dr. Lincoln... Don't forget Uli's goodbye cake: 2:30pm. You!! Totally!! Rock!!

  • @yootoob6003

    @yootoob6003

    5 жыл бұрын

    wtf

  • @hamentaschen

    @hamentaschen

    5 жыл бұрын

    @@yootoob6003 Read the black board ... :)

  • @LucenProject
    @LucenProject5 жыл бұрын

    2:20 Super easy, barely an inconvenience!

  • @SicilianDefence
    @SicilianDefence5 жыл бұрын

    Thank you Don! Awesome video as always

  • @JAKOB1977
    @JAKOB19775 жыл бұрын

    Thx Don simply perfect, just what I needed for my CV 8:55 [Neutrino Detection Expert] or NDE for short' signed by Dr. Lincoln from Fermilab. Remember Don, my name is Jakob if somebody rings you and wanna validate my CV claim.

  • @GottgleicherMaster
    @GottgleicherMaster5 жыл бұрын

    Great video, as always. But 300° F?? Why not use Kelvin, like it is common in a scientific context?

  • @m.i.qurashi2456

    @m.i.qurashi2456

    5 жыл бұрын

    I was thinking the same thing

  • @DDKKAY

    @DDKKAY

    5 жыл бұрын

    422.039 Kelvin...

  • @suokkos

    @suokkos

    5 жыл бұрын

    It was -300°F which would be 87°K if they have Argon in atmospheric pressure.

  • @Allan_aka_RocKITEman

    @Allan_aka_RocKITEman

    5 жыл бұрын

    I think he used degrees Fahrenheit because more people recognize that than Kelvin.

  • @deanbuss1678
    @deanbuss16785 жыл бұрын

    Just stumbled on your channel ! I barely graduated high school, yet I , for the first time, can actually understand and internalize you teaching. Thanks 😁

  • @spartanRS1
    @spartanRS15 жыл бұрын

    Fermilab is everything!

  • @eddipl5055
    @eddipl50555 жыл бұрын

    Thank you Dr. I’ve miss the videos

  • @XxPlayMakerxX131
    @XxPlayMakerxX1315 жыл бұрын

    thank you for simplifying physic and explaining it words I could understnad

  • @billzhang575
    @billzhang5755 жыл бұрын

    Such a great video, this is similar to the other Weak Force Video.

  • @azurlake
    @azurlake5 жыл бұрын

    The hard part for me to understand is also how to tell that the detected spray corresponds to an actual neutrino interaction, and not anything else that can be happening in or outside the detector. For instance, a random atom decay, or an energetic ray that made it into the detectors and broke apart other particles. I get the energy footprint is different, the decay times are different... but it's got to be a complete mess to tell one thing from another.

  • @paulmichaelfreedman8334

    @paulmichaelfreedman8334

    5 жыл бұрын

    I don't know the answer either but that's the hard part of particle science. Detecting isn't hard, it's distinguishing between the different kinds of collisions that the various particles undergo and telling which is which. Normally the theories predict a certain outcome in a certain situation and that's what you look for.

  • @michaelsommers2356

    @michaelsommers2356

    5 жыл бұрын

    _"... but it's got to be a complete mess to tell one thing from another."_ That's what the massive detectors, their associated electronics, and the massive computers are for. I can't tell you how this experiment works, but I can describe a simpler experiment I worked on as an undergrad. The basic principles are the same. We shot a beam of heavy ions at a target in a magnetic field. The ions would hit a nucleus in the target, exciting it. The target nucleus would recoil, and as it did so it would also precess, due to the magnetic field, and then decay, emitting a gamma ray. We had four gamma ray detectors arranged around the target, and a particle detector to detect the incoming ion as it bounced back from the collision. The electronics were set up so that we only accepted events in which the gamma was detected within a certain time after the recoiling ion was detected. Because of that coincidence window, stray gammas or stray particles would not be recorded. Of course, it might happen that a stray gamma and stray particle would arrive at the same time, but that would happen so infrequently that it would not affect the results.

  • @danielogrady6086

    @danielogrady6086

    5 жыл бұрын

    @@michaelsommers2356 Thanks for the reply! I get the idea, but the fact that in this other experiment it is neutrinos that we're dealing with, and there are billions of neutrinos going and coming from everywhere and passing through every square meter every second (and also the fact that they are much less understood that plain atoms or ions), must make it very difficult to have all the variables that controlled. For instance, I guess you cannot expect to have a neutrino bouncing off a particle and ALSO being detected by some electronic device within a timeframe to discard other events. In practice, there is no way to see a neutrino, so the footprint a netrino collision leaves must be rescued out from all that big "mess" in a much less controlled environment... after all we are talking about a big pool of water, which may contain DO2 and TO2 in very small quantities but causing random decays, and traces of other metals that may randomly decay, and there's also the fact that the interaction products must be able to make it to the detectors before being absorbed and/or transformed into something else, making it even more difficult to tell what the original interaction was. It's just mind blowing.

  • @yasminegulistan5446
    @yasminegulistan54465 жыл бұрын

    Awesome explanation and amazing physics

  • @joelmcallister9248
    @joelmcallister92482 жыл бұрын

    Thank you for posting. Very interesting.

  • @aharinparvin
    @aharinparvin5 жыл бұрын

    Fermi lab! You are superb !!!!

  • @adsjar
    @adsjar5 жыл бұрын

    Thanks for the wonderful video. While you have to use fahrenheit for the US audience, your 224K subscribers include folks from around the world who use celsius. Would be nice to have a text showing equivalent in celsius or even kelvin.

  • @tresajessygeorge210
    @tresajessygeorge210Ай бұрын

    THANK YOU... PROF. DR. LINCOLN...!!!

  • @johnmcnaught7453
    @johnmcnaught74535 жыл бұрын

    Great job Doc ! I watch all your presentations, and I think this was one I could follow from start to finish without getting a headache. Now that I'm an expert, how about a job. Have slide rule, will travel. (Remember sliderules ?)

  • @CrisJahnke
    @CrisJahnke3 жыл бұрын

    Amanzing!!! Thanks for your channel!

  • @Eyerleth
    @Eyerleth5 жыл бұрын

    Is "-ish" now an SI approved suffix?

  • @suokkos

    @suokkos

    5 жыл бұрын

    It sounds more like imperial suffix. The video happened to use Fahrenheit too.

  • @inyobill

    @inyobill

    4 жыл бұрын

    Statistical/Probabilistic Maths concept roughly interpreted into informal English.

  • @rakas_kone

    @rakas_kone

    4 жыл бұрын

    Yes

  • @averagemilffan

    @averagemilffan

    4 жыл бұрын

    Yes-ish

  • @Someguyorgirlfulness

    @Someguyorgirlfulness

    3 жыл бұрын

    This corner of the internet has provided me more goodness than I expected.

  • @PanglossDr
    @PanglossDr Жыл бұрын

    Thanks for that. I saw one of your other videos yesterday and had made a note to myself to lookup 'how on earth do you detect neutrinos'.

  • @AbdulHaseeb-sm5gy
    @AbdulHaseeb-sm5gy4 жыл бұрын

    I loved the music at beginning ❤️.

  • @ADITYAKUMAR-mb5ht
    @ADITYAKUMAR-mb5ht4 жыл бұрын

    Thanks for making such kind of awesome video siry

  • @paulmichaelson7203
    @paulmichaelson72035 жыл бұрын

    Dr. Don, you may be looking a bit gray these days but your videos are as fascinating as they have always been. I love neutrinos and your videos!

  • @drdon5205

    @drdon5205

    5 жыл бұрын

    DrDon has been gray for a long time. It's called distinguished and gravitas.

  • @trewq398
    @trewq3985 жыл бұрын

    thanks for the explanation

  • @AdityaKadamMechanical
    @AdityaKadamMechanical5 жыл бұрын

    Thank you Fermilab team for the explanation. India is constructing neutrino detecting laboratory in South India with worlds largest magnet times larger than CERN, Switzerland❤️ ❤️ ❤️ ❤️ ❤️

  • @joshfarch172

    @joshfarch172

    5 жыл бұрын

    why are we giving you aid then

  • @AdityaKadamMechanical

    @AdityaKadamMechanical

    5 жыл бұрын

    @@joshfarch172 If your govt. is providing any aid, stop the aid. Anyways for Indias GDP & population few million dollars is negligible :)

  • @kateri17

    @kateri17

    3 жыл бұрын

    @@joshfarch172 what a stupid and crass thing to say.

  • @sos_legio_primus9177
    @sos_legio_primus91775 жыл бұрын

    In the cat example that would lead to very confused and terrified dogs

  • @josephbrandenburg4373

    @josephbrandenburg4373

    4 жыл бұрын

    But we would all be a lot nicer to our pet cats!

  • @HonzaKuranda
    @HonzaKuranda5 жыл бұрын

    Awesome, thanks for fulfilling my curiosity :)

  • @danneil8778
    @danneil87785 жыл бұрын

    Thank you sir!

  • @281992pdr
    @281992pdr10 ай бұрын

    That was great. Thank you.

  • @paulporter5853
    @paulporter58535 жыл бұрын

    Great Video!

  • @nileshkulkarni6196
    @nileshkulkarni61965 жыл бұрын

    can you make a video on evanescent waves along with explanation for quantum tunneling ?

  • @nileshkulkarni6196

    @nileshkulkarni6196

    5 жыл бұрын

    please

  • @tusharsharma1375
    @tusharsharma13753 жыл бұрын

    You are hero dr. Don ❤️❤️ Love from india ❤️

  • @markedwards5289
    @markedwards52894 жыл бұрын

    Great presentation very informative Definitely going to sub

  • @danpenaliggon4055
    @danpenaliggon4055 Жыл бұрын

    Very very very cool video:)

  • @timmykenny717
    @timmykenny7173 жыл бұрын

    I got new speakers and immediately was like oh shit I need to hear Don Lincoln on these

  • @Andy-dp3hg
    @Andy-dp3hg2 жыл бұрын

    Thank you

  • @spiderjuice9874
    @spiderjuice98745 жыл бұрын

    Interesting that the W/Z bosons operate by the weak force but they still can overcome the strong force when smashing the nucleus. Any further explanation along these lines would be welcome!

  • @knan84
    @knan845 жыл бұрын

    If you detect the effects of secondary particles created by the boson-proton interaction, how can you ensure that the travel direction of both the neutrinos and the secondary particles are matching?

  • @MajorMatthias
    @MajorMatthias5 жыл бұрын

    Thanks Don. Question at around 7:00 - why do the weak boson interactions detected at Fermilab tend to involve such low-mass bosons? Does this particular neutrino interaction always produce low-mass bosons, or are the low-mass boson interactions the only ones the facility is equipped to detect?

  • @drdon5205

    @drdon5205

    5 жыл бұрын

    It's because the energy of neutrino beams is a "few" in units where the mass of the weak boson is "100-ish".

  • @leefelix7770
    @leefelix77705 жыл бұрын

    I totally understand what this video told me, now im a neutrino expert.

  • @Simbosan
    @Simbosan5 жыл бұрын

    Kind of had to read between the lines to get that the size of the z-bosons is affected by the energy of the neutrino. I understood from the video that most neutrinos produced ~100 mass bosons, i.e. the normal preferred mass. The next step took me by surprise

  • @user-ox2up1yl2g
    @user-ox2up1yl2g5 жыл бұрын

    Could you please make it possible to add subtitles/CC to your videos? It's easy thing to do, I am sure you'll figure that out. It would make your channel more accessible to those who their native tongue isn't English. I add subtitles & cc in Hebrew to many science/math related videos on KZread, and as a physics-math student, I find your videos as high-quality and quite informative. Making it possible to add foreign language CC/subtitles to your videos would benefit your channel in the long run, as it would increase the exposure to non-native English speakers countries. Other than that, I found your video quite accurate & enjoyable to watch. Keep up with your good work!

  • @petetaylor9758
    @petetaylor97584 жыл бұрын

    Great video as usual, but I have one question: is there a specific "signature" in the signals detected to identify the initial cause as a neutrino? I believe there are other experiments trying to detect things like dark matter, proton decay etc. Since dark matter (like neutrinos) can't be detected directly but only by knock-on effects (via the weak force?), is there theoretically a difference between the expected signals?

  • @mikejones-vd3fg
    @mikejones-vd3fg5 жыл бұрын

    Cool, had no idea there was such randomness in the results of the collisions.

  • @photon_phi902
    @photon_phi9023 жыл бұрын

    Please could you explain more on sterile neutrinos?

  • @sethapex9670
    @sethapex967010 ай бұрын

    Why doesn't fermilab coordinate with the Icecube observatory to conduct some neutrino experiments? It's further away and passes deeper through the earth so it would make an excellent opportunity to measure how those differences affect the neutrinos.

  • @sivarajakrishnamoorthy2601
    @sivarajakrishnamoorthy26015 жыл бұрын

    Love your videos sir. Can understand very easily. Can u pls make video on the science behind reflection of light??? Pls sir pls....

  • @raghulsankar1153

    @raghulsankar1153

    2 жыл бұрын

    check out fermat's principle

  • @johnbennett1465
    @johnbennett14655 жыл бұрын

    From this video it is clear that higher energy neutrenos would be easier to detect. Since you all are smart, you would use them if you could. So this leads to the question of why is it hard to generate higher energy neutrinos?

  • @cazymike87

    @cazymike87

    5 жыл бұрын

    The most advance Laser its in Romania . It has reached 10% from the power of the Sun in a single spot . Now, to answer your question : You saw that the Sun emits like very small energy neutrino ...and well its an entire Star . We reached just 10% from its power for now . So, do your math, and figurite it by yourself how much power crazy that laser must be . So, where do you get the energy to emit a single high neutrino?? Think about it!

  • @johnbennett1465

    @johnbennett1465

    5 жыл бұрын

    @@cazymike87 yes, but the big accelerators can generate particles with much higher energies than the particles in the the center of the sun. The total mass/number of particles is small, but in this case the higher the quality(energy) the less quantiity needed.

  • @tscoffey1
    @tscoffey15 жыл бұрын

    So neutrinos are detected by looking for the residue particles that occur when the neutrino emits a w/z boson, and that boson hits the nucleus of an atom. But how do you know that it was indeed a w/z boson that struck the nucleus (as opposed to another particle) in the first place? Is it in the way it scatters the particles? Or because at the energy levels involved, it could only be a w/z boson (and thus, from a neutrino)?

  • @AwnSight

    @AwnSight

    Жыл бұрын

    I think someone is making this up for grant money

  • @AwnSight

    @AwnSight

    Жыл бұрын

    It's like saying I threw a rock into a creek but only hit oxygen particles. Now I'm wondering how bombs actually work

  • @tedliu40
    @tedliu403 жыл бұрын

    If the speed of neutrino can be slow down, can it interact with other material such as chain reaction by neutrons?

  • @TomHendricksMusea
    @TomHendricksMusea2 жыл бұрын

    REVISED VERSION (psy phy physics from a sci fi writer.) The student of physics can write how photons made the entire universe in FIVE LINES of script! Background: My suggestion is that soon after the Big Bang Photons produced electron and positron pairs of waves 1. The ELECTRON wave had a negative charge. 2. The POSITRON wave had a positive charge. 3. The NEUTRINO had an electron and positron wave combined and had a neutral charge. 4. The PROTON had a mix of two positrons and one electron combined and had an overall positive charge. 5. The NEUTRON had a mix of two positrons and two electrons combined and had an overall neutral charge. Therefore : Photons made pairs of electrons and positrons. The electrons and positrons mixed together to make neutrinos, protons and neutrons such that: Electron (-) Positron (+) Neutrino (-) (+) Proton (+) (-) (+) Neutron (+) (-) (+) (-) When this production of particles was over, most positrons (anti electrons), didn't exist on their own. They were locked into neutrinos, protons, and neutrons - though conservation of charge was maintained. This may help explain the missing anti matter problem. This period of the Big Bang was probably during the lepton epoch. Though the neutrino and proton are extremely stable. the neutron can be converted back to a proton and electron (with an antineutrino) in beta decay. Protons and electrons can convert to neutrons in neutron stars. So proton + electron = neutrons has already been proven.

  • @shawnchong5196
    @shawnchong51965 жыл бұрын

    You ar the best.

  • @arunabhganodwale1022
    @arunabhganodwale10225 жыл бұрын

    I love particle and nuclear physics.

  • @dermmerd2644

    @dermmerd2644

    5 жыл бұрын

    Me too. I don't get much of it though, but the things I understand are cool. :)

  • @ahamdzaarour7853
    @ahamdzaarour78535 жыл бұрын

    how did we know the spin of differnt particles such as bosons fermions ? for example why fermions has spin =1/2 integer and why bosons has an integer spin?

  • @superspeedstergaming20
    @superspeedstergaming205 жыл бұрын

    You are literally obsessed with neutrinos

  • @justagenosfan

    @justagenosfan

    3 жыл бұрын

    @@remley8877 matter, apparently

  • @zakirhussain-js9ku
    @zakirhussain-js9ku3 жыл бұрын

    Uncertainty principle takes care of mass and energy violations.Please explain if other conserved properties like charge are not violated.

  • @AndyAnaya
    @AndyAnaya3 жыл бұрын

    I was able to find one in my back yard thanks

  • @Valdagast
    @Valdagast5 жыл бұрын

    It blows my mind that we can even detect these things. Since W and Z bosons have mass they can't travel at the speed of light. Do we know how fast they typically travel?

  • @Pankajkumar-el7kv

    @Pankajkumar-el7kv

    5 жыл бұрын

    Very near to 'c' ......rumor was that the travel faster than light ......but its clear now they cant beat photon unless photon is in dense medium.

  • @onehitpick9758

    @onehitpick9758

    5 жыл бұрын

    @@Pankajkumar-el7kv That was a wiring/connection problem. They never, supposedly, traveled faster than light.

  • @rogermoore7293

    @rogermoore7293

    5 жыл бұрын

    Just like everything else it depends on how much kinetic energy they have. You can create them at rest so they do not move at all which is what the LEP collider at CERN used to do.

  • @onehitpick9758

    @onehitpick9758

    5 жыл бұрын

    @@rogermoore7293 This is nonsense. Neutrinos have incredibly low masses. Even thermal neutrons (much, much, much more massive) move at incredibly high speeds. A neutrino created in reality must be moving at close to (but not equal to) the speed of light.

  • @ABaumstumpf

    @ABaumstumpf

    5 жыл бұрын

    @@onehitpick9758 ?? No? The velocity of these particles can vary greatly. Most solar neutrinos reaching earth are under 10eV, many under 1eV which gives them a speed that is just a fraction of the speed of light. They can be as slow as just a couple thousands km/s.

  • @johugr
    @johugr5 жыл бұрын

    Most interesting many thanks. What happened to all the heavier Bozons?

  • @3d1stp3rs0n
    @3d1stp3rs0n11 ай бұрын

    With Positron Emission Tomography, the trajectory of beta minus rays can be calculated. Is it possible to use this method for neutrinos and determine where they originated from?

  • @rja7420
    @rja74204 жыл бұрын

    Neutrinos are awesome. I'm really curious to know how fast they are traveling, the percentage of light speed and if that speed is constant for all neutrinos or does the speed vary.

  • @qiyuechen7853

    @qiyuechen7853

    2 жыл бұрын

    Neutrino's velocity varies from zero to the speed of light.

  • @zzztriplezzz5264

    @zzztriplezzz5264

    Жыл бұрын

    @@qiyuechen7853 Just below the speed of light because they have a mass. Extremely small, but it exists.

  • @Cassandra_Johnson
    @Cassandra_Johnson5 жыл бұрын

    I have been hunting for a video on just this topic. THANKS! Also a question for a future video: What is alpha radiation always a helium nucleus? I would have thought that ejecting a hydrogen nucleus (a single proton with zero or more neutrons) would take even less energy and thus be more likely, but no one ever suggests this happens, and I can't find anyone explaining why. Keep up the great videos!

  • @nafrost2787

    @nafrost2787

    5 жыл бұрын

    Well I read in wikipedia that sometimes a nucleus can eject a proton, But while I am not a particle physicist I think I have an explantion. The nucleus emits an alpha particle to increase its stability, but it still needs to conserve momentuem, and energy. If it emits 1 proton, that proton gains potential energy (loses eletric but gains strong force), and it must move at high speed to consorve momentuem, but that would mean an increase in kinetic energy, so overall there would be an energy gain if a single proton is ejected. I guess that the best way to conserve both momentuem, and energy, would be the ejection of a helium-4 nucleus (less kinetic energy and less potential strong force energy for the ejected particle). If this sounds a bit foggy and confusing, don't worry I'm just tried and while this is clear in my mind, it takes forever to write, but I can take the time, to write a better explantion of my idea later, if you want.

  • @KohuGaly

    @KohuGaly

    5 жыл бұрын

    en.wikipedia.org/wiki/Alpha_decay#Mechanism TL;DR Alpha particles are smallest, most energetic nuclei, that have net zero spin. Reactions that change spin (especially by non-integer amounts) are less likely than those who don't. Since helium nucleus has such a high energy, it is the most likely to quantum-tunnel out of the nucleus, because the barrier it has to tunnel through is comparatively smaller.

  • @Cassandra_Johnson

    @Cassandra_Johnson

    5 жыл бұрын

    @@KohuGaly Thanks, my google is usually strong, but thanks for catching that for me! Ah, quantum tunneling, it does make for such counter intuitive logic.

  • @Erik-rp1hi
    @Erik-rp1hi5 жыл бұрын

    I don't know if Neutrinos have mass hence energy but what happens if a Star is emitting the particles and a Neutron star is close by. Do they pass through or hit and give up their straight path and bounce out or get absorbed or?

  • @robertrpenny
    @robertrpenny4 жыл бұрын

    Dr Don, I recall a few years ago there was big news from CERN when an LHC exp appeared to have detected a neutrino that exceeded c in velocity. I think that is a particle with small rest mass so would have upset the apple cart in a big way. SR for one thing. Then some numbers were reworked and it turned out less than c so you did not have to go back to school. Haha. Could you do a video about that issue?

  • @Tubluer

    @Tubluer

    Жыл бұрын

    Didn't they finally track that down to a fault in the experiment?

  • @photon_phi902
    @photon_phi9023 жыл бұрын

    What the difference types of internation between neutrino and matter? also is true there are 4 difference types of neutrino? And how much is the difference between them a lot of little?

  • @BIGWUNuvDbunch
    @BIGWUNuvDbunch5 жыл бұрын

    Nice billiard-ball interpretation of neutrino scattering. This is the sort of intuition most public-geared explanations of particle physics are missing.

  • @jasonlough6640
    @jasonlough66402 жыл бұрын

    Questions. Could large mass WBosons be used as a power source? Could subatomic splitting of a nucleus by a neutrino cause a chain reaction of other nucleus being split and so on?

  • @cedriceric9730

    @cedriceric9730

    Жыл бұрын

    can it be used as a power source? not yet

  • @cedriceric9730

    @cedriceric9730

    Жыл бұрын

    can it be used as a power source? not yet

  • @omsingharjit
    @omsingharjit4 жыл бұрын

    3:00 this is confusing How weak force w and z can be heavier than protons if it exists in side nucleons as weak force ??

  • @marvelstudios7335
    @marvelstudios73355 жыл бұрын

    Mr Don please make a vedio on FASER detector !!

  • @michaelbennett5417
    @michaelbennett54175 жыл бұрын

    Ok. I understand that seeing the interaction is possible. I believe you have understated the difficulty of actually seeing them. I could be understating this but it could be comparable to seeing the transition of Exo planets. Space is big. But the space between atoms is larger.

  • @photon_phi902
    @photon_phi9023 жыл бұрын

    Is neutrino can do 2 difference thing or function? And is it possible to categories neutrino in 2 difference category with different function or beginning of behavior?

  • @halonothing1
    @halonothing15 жыл бұрын

    How much energy would be involved in a typical neutrino interaction?

  • @jimkernohan2164
    @jimkernohan21643 жыл бұрын

    So how do you know if it is an electron, muon, or tau neutrino?

  • @saurabhsharma4261
    @saurabhsharma42615 жыл бұрын

    Sir can u tell me about neutrino-nucleus coherent scattering specially it's definition

  • @jakeagado3463
    @jakeagado34634 жыл бұрын

    So im confused? A nuetrino is one of many detectable/undetectable particles that comes from the sun that is so static in position when traveling towards 🌎 that if, and when a neutrino does make collision with an atom's subatomic particles in an atom-neutrino collision detection field in a lab or elsewhere ; does a neutrino have the chance to create a particle of every atomic sized element on the periodic table?

  • @bennymarshall1320
    @bennymarshall13203 жыл бұрын

    So it's a lot easier to detect higher energy neutrinos from events such as gamma ray bursts because they have a greater range of interaction?

  • @funkyflames7430
    @funkyflames74305 жыл бұрын

    You said neutrinos could emit w bosons. Because we need to conserve charge, does the w boson simply get pass this through uncertainty or does the neutrino produce two w bosons of opposite charge? Or possibly the neutrino emits a positive (or negative) w boson and turns into an electron (or positron). I know the neutrino has to move fairly fast too to be able to provide enough energy.

  • @Cassandra_Johnson

    @Cassandra_Johnson

    5 жыл бұрын

    As I understand it, virtual particles don't have to follow conservation laws as long as they cease to exist in a time limit under the Heisenberg uncertainty principle. Also, virtual particles may not even exist, but rather be a math trick to explain the result but not the actual event. Admittedly, if virtual particles are real, even if they do balance the books by disappearing quickly, injecting real energy into an electromagnetic interaction still seems to violate conservation laws on the whole in my mind, because the effect outlasts the uncertainty principle period, so I think this is a great question.

  • @drdon5205

    @drdon5205

    5 жыл бұрын

    When a neutrino emits a W, It becomes a muon or electron or tau. This was a detail that wasn't mentioned in the video.

  • @jagmarz
    @jagmarz5 жыл бұрын

    So, basically, the neutrino has to emit the weak boson right in the middle of an existing particle, right? If the distance traveled is 1/1000 of the width of a proton, then it basically already has to be right there when it's created. Or am I missing something?

  • @drdon5205

    @drdon5205

    5 жыл бұрын

    Nope. You got it.

  • @Andy-dp3hg
    @Andy-dp3hg2 жыл бұрын

    Imagination A Every neutrino gently appeared showing your images into my mind and mating tight to heart when it is passing through this soul every second... Andy Ta

  • @virt1one
    @virt1one3 жыл бұрын

    so if these rare light neutrinos travel such a short distance before "going away", how can they make it far enough to hit an atom? It seems like they would have to be created either inside or right at the doorstep of the atom core itself to have any chance at all of hitting anything inside it?

  • @eriknelson2559
    @eriknelson25592 жыл бұрын

    Professor Lisa Randall describes the extent of wave-functions in higher dimension(s) orthogonal to our three large "macro" dimensions, and how the Higgs field resides on one "side" of our membrane at "low" values of the higher dimensional coordinate(s), whereas light particles reside on the opposite "side" of our membrane at "high" values of those coordinates. If so, then neutrino oscillations could be construed as physical oscillations of the neutrino wave functions "in-and-out-and-in-and-out" back and forth through those extra dimension(s). As the neutrinos "porpoise side-to-side" through the fabric of spacetime along the large space & time dimensions, they physically oscillate towards and away from the "Higgs side" of the fabric as they travel. In analogy to a Mechanical Engineering model of the spacetime fabric as an elastic membrane, with one side under compression, the opposite under tension, and a neutral plane of minimal stress & strain down the middle, a heavy neutrino is one which is currently propagating down one "side" or "surface" of the fabric; a light neutrino is one on the opposite "side" or "surface"; and a medium neutrino is one in the middle (say).

  • @ytashu33
    @ytashu335 жыл бұрын

    Great video. So... why Argon? Guessing here... large nucleus (hence greater chances of a neutrino slamming into one), and is liquid at low temps (low temps i suppose are necessary for...). Does it really need to be a noble gas though, or is that part just accidental?

  • @drdon5205

    @drdon5205

    5 жыл бұрын

    Several reasons. One, heavy nucleus...xenon would be even better. Two, can be made liquid and not at an outrageously low temperature. Three ionizes easily, so argon is both a target and a detector. Four, pretty inexpensive. Five, this technology can result in a finely grained detector, resulting in images like the ones seen in the video.

  • @ytashu33

    @ytashu33

    5 жыл бұрын

    Makes lotsa sense, yeah inexpensive is important too. Thanks for making what sounded like a mystery (why Argon of all things), into almost an obvious choice, once one understands!! Much Appreciated!!

  • @OleTange
    @OleTange5 жыл бұрын

    What is Fermilab's LBRY handle?

  • @ShenLong33
    @ShenLong335 жыл бұрын

    Why is it that whenever a neutrino is near a nucleus of an atom if splits? BUT, I think the most important question is: How do you know that when the nucleus of an atom is destroyed it is by the mechanism you are describing? I mean, is there no other way the nucleus would be broken? Because if there is another mechanism by other particles, then you are not sure if it was caused by a neutrino passing by. Love the videos. Please keep on this work. I think it is REALLY important.

  • @KohuGaly

    @KohuGaly

    5 жыл бұрын

    The collision products match what we expect to see from a neutrino with particular energy coming from particular direction. It could technically be something else, but Occam's razor suggests otherwise. In fact, you can go about it the other way around - define a neutrino as whatever causes these effects and then try to figure out its properties. That's how electrons are defined.

  • @gabeg.2848
    @gabeg.28483 жыл бұрын

    I don't understand though how does a neutrino emits a weak interaction. Should there be conservation of mass and charge to it? How can neutraly charged neutrino emit a w boson? And the mass of a neutrino is very low (but I believe the energy contained within is translated into the mass of the mass?)

  • @nafrost2787
    @nafrost27875 жыл бұрын

    5:53 Technically the energy is conserved, as far as I understand it, the energy for uncertainty in the energy of the particles, comes from vacuum energy. Either way as revealed by Nother's theorem the energy must be conserved, becuase it doesn't matter when the particles is measured.

  • @MrIllusiongamer12

    @MrIllusiongamer12

    5 жыл бұрын

    Aka the disclosure of short periods of time

  • @Soup_cant_play
    @Soup_cant_play5 жыл бұрын

    Last time I was this early the universe was born.

Келесі