Feynman's technique is the greatest integration method of all time

Another beast of an integral laid to rest by the sword of Feynman!!!
The solution development is absolutely gorgeous and the result is surprisingly satisfying.

Пікірлер: 499

  • @maths_505
    @maths_5059 ай бұрын

    If you like the videos and would like to support the channel: www.patreon.com/Maths505 You can follow me on Instagram for write ups that come in handy for my videos: instagram.com/maths.505?igshid=MzRlODBiNWFlZA==

  • @thermodynamics458
    @thermodynamics458 Жыл бұрын

    Young mathematically talented kids these days are so lucky to have the internet as a resource to keep them stimulated. This kind of video is exactly what I needed as a young teenager.

  • @Targeted_1ndividual

    @Targeted_1ndividual

    Жыл бұрын

    As a teenage self-proclaimed math goblin / Feynman acolyte, I concur.

  • @caspermadlener4191

    @caspermadlener4191

    Жыл бұрын

    Most of the current IMO participants also watch a lot of math videos. As fourth of Europe at the IMO last year, I am surprised how much there is to learn on the internet.

  • @mayasudhakar9595

    @mayasudhakar9595

    Жыл бұрын

    I feel so jealous of them 😁

  • @slavinojunepri7648

    @slavinojunepri7648

    Жыл бұрын

    I wish I had access to resources of this king when I was young. I grew in a village with no books and libraries. I barely had a blackboard with some pieces of chalk and a kerosene lamp that hurt my eyes at night during homework. But somehow I took pleasure in math.

  • @Targeted_1ndividual

    @Targeted_1ndividual

    Жыл бұрын

    @@slavinojunepri7648 where did you grow up?

  • @manstuckinabox3679
    @manstuckinabox3679 Жыл бұрын

    The more I watch feynmann integration technique videos, the more powerful I become.

  • @azizbekurmonov6278

    @azizbekurmonov6278

    Жыл бұрын

    Same!!

  • @Dagestanidude

    @Dagestanidude

    Жыл бұрын

    ​@@azizbekurmonov6278 азизбек.не русскоговорящий ты случайно?

  • @azizbekurmonov6278

    @azizbekurmonov6278

    Жыл бұрын

    @@Dagestanidude Da ya panimayu

  • @InoueRikako

    @InoueRikako

    Жыл бұрын

    Lol

  • @marcokonst4144

    @marcokonst4144

    Жыл бұрын

    Xp farming on this video

  • @kwgm8578
    @kwgm8578 Жыл бұрын

    It's been 50 years since I've solved a complex integral. This guy moves too fast for me! I'm reminded of my old teacher, and later friend, Wolfram Stadler. Rest in Peace, Wolf.

  • @blkcat6184

    @blkcat6184

    11 ай бұрын

    Ditto. Learned how, then never had to use them again. Today, fugetaboutit!

  • @LetsbeHonest97

    @LetsbeHonest97

    9 ай бұрын

    sir, may I ask what you studied and what you did in your professional career? I'm planning to get back to grad school for math and computing

  • @kwgm8578

    @kwgm8578

    9 ай бұрын

    @@LetsbeHonest97-- If you're asking me, I earned an undergrad in EE in 1980 and a master's in CS in 1984. Go and do it as soon as you can -- school gets more difficult as you age.

  • @LetsbeHonest97

    @LetsbeHonest97

    9 ай бұрын

    @@kwgm8578 absolutely ... Will do asap

  • @kwgm8578

    @kwgm8578

    9 ай бұрын

    @@LetsbeHonest97 Good luck to you!

  • @jul8803
    @jul8803 Жыл бұрын

    So to sum it up and generalize: Craftily plug in a parameter a so the derivative of the integrand with respect to a is simpler, now you have I(a) and you're looking for I = I(a0) Derive the integral with respect to the parameter making sure swapping places between the integral and the derivative is allowed (check convergence) Make your way towards an explicit expression for I'(a) Integrate I'(a) yielding an extra constant in the I(a) expression Determine the constant by plugging in I(a) a nice value for a making it trivial to compute Replace a by a0 and voilà, I(a0) à-la-Feynman, serve hot with a light Chianti.

  • @brendawilliams8062

    @brendawilliams8062

    Жыл бұрын

    No wonder they use a math sign language. What a ride!

  • @rondovk

    @rondovk

    8 ай бұрын

    Hero

  • @TheChrisSimpson

    @TheChrisSimpson

    7 ай бұрын

    My summary: Find someone better at math than me and ask them for help. Maybe I'll find this guy's email somewhere...

  • @mq-r3apz291

    @mq-r3apz291

    5 ай бұрын

    We makin it outa Cornell wit dis one😎

  • @pleasegivemeaciggy
    @pleasegivemeaciggy Жыл бұрын

    Love how you talk about mathematics with passion while solving :)

  • @markburnham7512
    @markburnham7512 Жыл бұрын

    My favorite aspect of Feynman is that, while he was certainly a genius, he has a big dose of ordinary guy that we can relate to. I'm not in his league by a long shot, but I bet it would have been a blast to hang out with him.

  • @JgHaverty

    @JgHaverty

    9 ай бұрын

    With respect, what are you talking about lol? 😂 Feynman's brilliance was only matched by his ego and capability to be a complete asshole. His lecture series are engaging and make him out to be what youre trying to portray, but the reality of his personality was quite a bit more grim in both nature and circumstance of his life. He was a good teacher; as that tied into his work, but no you really wouldnt want to be "buds" with him and he most certainly is not a strong candidate for representing the "every man". Sorry to burst your bubble; but best to keep his legacy wrapped in his brilliance and contributions to science as a whole, not his personality.

  • @TheSireverard

    @TheSireverard

    8 ай бұрын

    Surely you're joking, Mr Feynman... ;)

  • @jamesedwards6173

    @jamesedwards6173

    8 ай бұрын

    JgHaverty, spoken like a true ignoramus.

  • @jamesedwards6173

    @jamesedwards6173

    8 ай бұрын

    @@TheSireverard, and also "What Do You Care What Other People Think?"

  • @JgHaverty

    @JgHaverty

    8 ай бұрын

    @jamesedwards6173 what the hell are you talking about? Hahaha

  • @smaari
    @smaari9 ай бұрын

    Excellent work, a good way to check the answer is by plotting the function (e^-x^2)*sin(x^2)/x^2 and estimating the area from 0 to infinity under the curve. The function is > 0 from x=(0 to 1.722), and the function is almost zero for x=(1.722 to 2.35) and then zero for all values of x>2.35. You can approximate the area under the curve as a right tringles with sides of 1 and 1.722. The area for that right triangle is (1x 1.722)/2=0.861. The exact answer per the video is 0.806626.

  • @Unidentifying
    @Unidentifying Жыл бұрын

    epic , thank you for making this technique so clear

  • @user-lu5nj7yw5i
    @user-lu5nj7yw5iАй бұрын

    Absolutely beautiful. Thank you for sharing!!

  • @JuhoKim-qg1tk
    @JuhoKim-qg1tk12 күн бұрын

    This is AMAZING!! Thank you for your great video. I think I lack some basic techniques regarding imaginary number but except that everything was super clear and easy.

  • @user-dl8rb2do5s
    @user-dl8rb2do5s11 ай бұрын

    This was amazing, really gotta use it instead of by parts. Thanks a lot !

  • @azizbekurmonov6278
    @azizbekurmonov6278 Жыл бұрын

    You're doing really good content. Please, moreeeeee Feynman Integrals!!

  • @scottlapierre1773
    @scottlapierre1773 Жыл бұрын

    Been waiting for an explanation of my favorite’s, Feynman, noble prize topic.

  • @vincentstrgar441
    @vincentstrgar4418 ай бұрын

    Beautifully done video!

  • @pierre-adelinmercier1427
    @pierre-adelinmercier1427 Жыл бұрын

    Noticing that d/dx(-exp(-x^2)/x) = 2exp(-x^2) + exp(-x^2)/x^2, I went for an integration by parts, which also works nicely, but is less elegant I admit. I found amusing that in that case, the result appears in the form of sqrt(Pi/sqrt(2))(cos(Pi/8) - sin(Pi/8)). After multiple careful checks for mistakes, I eventually realized it is actually the same result as in the video!

  • @yogsothot

    @yogsothot

    Жыл бұрын

    In the video is =d/da[sin((ax²) dx =f of d/da X² ½-a The -exp =to its integral, but its sin8 and exp

  • @chrisc4208
    @chrisc42088 ай бұрын

    Wow yes this is so intuitive and elegant and beautiful and I totally followed you the whole way along

  • @maths_505

    @maths_505

    8 ай бұрын

    Thanks so much 😊

  • @edcoad4930
    @edcoad4930 Жыл бұрын

    Did it (after seeing video) with the a on the exponential term.....follows pretty much the same route except using the Im operator as sin(x^2) is a constant. Other than proving Im(sin(x^2) = 0) over the range, pleasingly we get the same answer.

  • @Amb3rjack
    @Amb3rjack Жыл бұрын

    As someone who failed their A level maths almost forth years ago, I found this video utterly fascinating and understood (or rather, could follow) practically none of it . . . .

  • @ShimmerArc
    @ShimmerArc9 ай бұрын

    Very cool! Thanks for sharing.

  • @AbouTaim-Lille
    @AbouTaim-Lille9 ай бұрын

    We used to study similar integrals using the residue theory in the complex field and the polar coordinates.

  • @ziggy6698
    @ziggy6698 Жыл бұрын

    Cool video. :D Another way I think you could do is using my #1 favorite method, ha ha. Once you've differentiated and the integrand is in the cosine form, use Euler's definition to re-write cos. Then you have a sum of integrals of exponentials. Then the trick is, make a u subsitution for the argument of the exponential, that puts the integrals into the form of a Euler's integral definition of gamma. The power of u allows you to determine each z.

  • @dougr.2398
    @dougr.23988 ай бұрын

    This may be one of Feynman’s integration techniques (he has several and needed them to perform integrations necessary to compute Feynman diagram calculations) but it isnt the one he was most famous for…. Integrating by analogy with finite summations and vice versa. This particular technique, or parts of it (particularly integration by differentiating under the integral sign) is discussed in Engineering Mathematics Advanced texts such as Sokolnikoff & Sokolnikoff . This particular calculation is a bit more involved as complex variables are introduced

  • @edmundwoolliams1240
    @edmundwoolliams1240 Жыл бұрын

    Amazing! I solved this by defining an I(a,b) equal to the integral with a parameter inside the e and the cos. Then differentiating partially and adding to get a first order PDE. Then conjugating and using partial integration to get the required result! Your method is much slicker, as you just took the real part rather than dealing with the whole complex function!… 😂

  • @zed_961

    @zed_961

    6 ай бұрын

    It's crazy

  • @EmpyreanLightASMR
    @EmpyreanLightASMR Жыл бұрын

    Been listening to the Feynman audiobook ("Surely...") and Feynman was a PLAYA wowwww. Dude got around! And then he talks about this, so I had to look it up. I've only taken Calc 1, so this is way beyond me but fun to watch. I'll have to watch more videos to understand it better.

  • @aaabbb-lw3ob
    @aaabbb-lw3ob9 ай бұрын

    Beautiful!

  • @AJ-et3vf
    @AJ-et3vf8 ай бұрын

    Great video. Thank you

  • @aarohibhavsar1520
    @aarohibhavsar15209 ай бұрын

    This makes me want to learn complex analysis. Great video considering I still understood most of it

  • @gauranshbansal
    @gauranshbansal8 ай бұрын

    Can't wait to learn all this it seems interesting enough 🙂

  • @manfredgeilhaupt5070
    @manfredgeilhaupt50709 ай бұрын

    very perfect, I tried to do it myself and needed the video again and again. But now I got it all. See research gate if you are missing 2 or 5 steps in between.

  • @julianmldc
    @julianmldc Жыл бұрын

    Amazing content!

  • @pesto484
    @pesto484 Жыл бұрын

    Very nice presentation.

  • @dipankarmondal7662
    @dipankarmondal766210 ай бұрын

    Just infinitely beautiful!

  • @maths_505

    @maths_505

    10 ай бұрын

    SUIIIIIIIIIIIIIIII

  • @MrWael1970
    @MrWael1970 Жыл бұрын

    very nice effort. good luck

  • @gheffz
    @gheffz Жыл бұрын

    Brilliant! Thank you.

  • @arctic_haze
    @arctic_haze8 ай бұрын

    Wow. This technique is amazing. Maybe not even among the top 10 achievements of Richard Feynman but still fantastic!

  • @michaelmello42
    @michaelmello428 ай бұрын

    Wonderful!

  • @gevodem
    @gevodem11 ай бұрын

    What a beautiful integral! You might also be able to solve this same integral using residues/contour integration.

  • @zunaidparker
    @zunaidparker Жыл бұрын

    Nice integral! I wonder if it's solvable putting the a parameter into the exponential instead? Seems like you should end up at the same place. To solve the constant of integration you would need to let a tend to Infinity instead of setting it to zero, and the rest should be the same.

  • @patrick-kees8962

    @patrick-kees8962

    Жыл бұрын

    I'd imagine you'd get issues with the fact you'd still have the sin and therfore a complex exponential which makes things more complicated

  • @GilbertoCunha-tq2ct

    @GilbertoCunha-tq2ct

    Жыл бұрын

    @@patrick-kees8962 I believe it would still work if you consider the Imaginary part of the integral instead of the Real part

  • @cassianperera2426
    @cassianperera24269 ай бұрын

    Thank you Sir for your best explanation and working out of the problem🥰😍🤩

  • @maths_505

    @maths_505

    9 ай бұрын

    Thank you for the nice comment

  • @johnrosen7856
    @johnrosen7856 Жыл бұрын

    Beautiful solution

  • @davidbakker1170
    @davidbakker1170 Жыл бұрын

    Once upon a time I would have been able to reproduce this. Now I am just watching and thinking wow.

  • @arioriabdulrafiu8773
    @arioriabdulrafiu8773 Жыл бұрын

    You are mad man indeed ... You mad a great Difference. So clever...❤❤❤❤❤

  • @annanemustaph
    @annanemustaphАй бұрын

    nice demonstration 👍

  • @VK-lq5pk
    @VK-lq5pk9 ай бұрын

    beautiful

  • @Schlaousilein67
    @Schlaousilein679 ай бұрын

    I love this video!!

  • @probro9898
    @probro9898 Жыл бұрын

    I understood it but it still made my head spin!

  • @nicolasgomezgimenez212
    @nicolasgomezgimenez21211 ай бұрын

    Thanks you , greeting from Argentina.

  • @denniswhite4446
    @denniswhite4446 Жыл бұрын

    I came up with this myself in college. I hadn't known until now that this Feynman guy stole it.

  • @maths_505

    @maths_505

    Жыл бұрын

    😂😂😂

  • @RohanDhandr8

    @RohanDhandr8

    Жыл бұрын

    I completely believe you

  • @Bill0102
    @Bill01024 ай бұрын

    This is sheer brilliance. I found something with a similar message, and it was beyond words. "The Art of Meaningful Relationships in the 21st Century" by Leo Flint

  • @michaelbaum6796
    @michaelbaum6796 Жыл бұрын

    Very awesome technique, I love it - great👌

  • @JimTDF
    @JimTDF Жыл бұрын

    Why did we stop? application of a formula for the cosine of double angle shows that sin(pi/8) equals sqrt(2-sqrt(2))/2 ... which allows us to simplify the entire answer to sqrt( pi (sqrt(2) - 1) / 2) ; that final formula does not use any trig functions (sin,cos,etc). Just a thought :)

  • @Darakkis
    @Darakkis8 ай бұрын

    Awesome!

  • @NimrodTargaryen
    @NimrodTargaryen8 ай бұрын

    Wonderful 🎉❤

  • @thomaskeating7539
    @thomaskeating7539 Жыл бұрын

    I like the pace, you don't go at a snail's pace like some others. Great job!

  • @mus3equal
    @mus3equal5 ай бұрын

    Great video, primers are so much better than triggers

  • @ivarorno
    @ivarorno9 ай бұрын

    Around minute 10, you can just use the fact that 1-i has angle -π/4 so the square root has half that, and multiplying by i rotates it by π/2 meaning that the new real part(cosine) is the old imaginary part(sine). Just seems slightly easier and more intuitive than the algebraic argument.

  • @georgemaclaurin3705

    @georgemaclaurin3705

    9 ай бұрын

    Instead of -pi/4 i used 2pi-pi4=7pi/4 which is the same but got different answer. 😢

  • @TruthOfZ0
    @TruthOfZ0 Жыл бұрын

    I feel that im evolving after watching this!!

  • @BederikStorm
    @BederikStorm8 ай бұрын

    The square root in complex numbers has two solutions. You also have e^7pi/8 as solution

  • @benzienugent2010
    @benzienugent201011 ай бұрын

    How does any of this help me order coffee?

  • @TienNguyen-lg6mu
    @TienNguyen-lg6mu Жыл бұрын

    technically you also have to ensure that the differentiation and integration are interchangeable (which is not true in general for integrable functions) which can be quite tedious, especially when working with improper integrals

  • @thomasdalton1508

    @thomasdalton1508

    Жыл бұрын

    He covered that in the video, albeit somewhat handwavingly.

  • @egdunne

    @egdunne

    Жыл бұрын

    @@thomasdalton1508 Yes. The handwaving ignored the potential problem at the left-hand side, where x=0 and x^2 is in the denominator. It's fine, but should be addressed.

  • @thomasdalton1508

    @thomasdalton1508

    Жыл бұрын

    @@egdunne It doesn't need to converge at x=0 does it? The integral is from 0 to infinity, so it needs to converge on the *open* interval (0, infinity). The boundary points don't matter.

  • @evertvanderhik5774

    @evertvanderhik5774

    Жыл бұрын

    Mathematicians will worry about that, physicists not so much.

  • @thomasdalton1508

    @thomasdalton1508

    Жыл бұрын

    @@evertvanderhik5774 Physicists might not worry about proving rigorously that it converges appropriately, but they need to worry about whether it does or not otherwise they'll get the wrong answer. You can determine that using rules of thumb rather than a rigorous analysis, but you have to do it.

  • @billycheung5114
    @billycheung51147 ай бұрын

    Inspiring

  • @prostatecancergaming9531
    @prostatecancergaming95319 ай бұрын

    There is no reason for this thumbnail to go so hard

  • @jpaulc441
    @jpaulc441 Жыл бұрын

    I'm one of the very unlucky ones who are incapable of math beyond basic algebra but am fascinated by it. I watched the entire video despite understanding nothing. I'm not sure if this is just an elaborate form of self-harm...

  • @Amb3rjack

    @Amb3rjack

    Жыл бұрын

    Absolutely. I feel exactly the same!

  • @illumexhisoka6181
    @illumexhisoka6181 Жыл бұрын

    I have a great integral as an idea for a video The integral from 0 to ∞ of e^(A(x^B)) Where A and B are any complex numbers except the values of divergencey and to find what are they

  • @svetlanapodkolzina1081
    @svetlanapodkolzina1081 Жыл бұрын

    Nice video!

  • @ushakiran8549
    @ushakiran8549 Жыл бұрын

    It would be easy for me to love mathematics if my teachers were like you!

  • @peterzinya1
    @peterzinya1 Жыл бұрын

    The derivative of x squared is 2X

  • @nathannguyen2041
    @nathannguyen20418 ай бұрын

    Why choose to throw alpha into the sine function as opposed to the x^{2} in the denominator or the exponent exp{-x^{2}} in the numerator?

  • @usernameisamyth
    @usernameisamyth Жыл бұрын

    amazing

  • @teqnify63
    @teqnify63 Жыл бұрын

    My AP calculus BC brain has expanded… glad i’m pursuing a stem major 😃

  • @JgHaverty

    @JgHaverty

    9 ай бұрын

    Eh this is pretty entry level stuff on tbe grand scheme of things. If you really want to "expand your brain", go noodle around feynman diagrams; with regards to path integrals and quantization 😅. If you REALLLY wanna see where this rabbit hole can go, then go over neutron transport while youre there 😂 Recommend calming the hubris of your AP calculus class. The reality is if youre pursuing a degree in engineering, physics, or whatnot; your best interest is actually not using AP credits for anything other than humanities. Encumbent on what programs you narrow down and get accepted to of course [if your program only requires calc 1, then yes of course use your ap credit in that capacity]. Its a good path to be on; just take it in stride. That said, AP credits are kind of useless beyond gpa padding and i dont understand why highschools put so much weight on them in the first place..

  • @yuyo1948
    @yuyo194811 ай бұрын

    ¡¡¡Brillante!!!

  • @user-oh2kt8lf6g
    @user-oh2kt8lf6g Жыл бұрын

    sin(pi/8) is easy to calculate: sqrt((sqrt(2)-1)/sqrt(2))/sqrt(2). Hence, we can simplify the result: I = sqrt(pi/2) * sqrt(sqrt(2)-1)

  • @facurod1392
    @facurod1392 Жыл бұрын

    I just want to know which drawing tablet do you use for mathematics and which app (on Android Tablet I suppose) ?. Thank you very much. And great content!

  • @spbuster8060
    @spbuster8060 Жыл бұрын

    damn this is great

  • @dirk_t_wachter
    @dirk_t_wachter8 ай бұрын

    Genius!!! Dick Feynman is awesome

  • @mopcku77
    @mopcku778 ай бұрын

    Nice video. What application and writing device(pen) are you using to write so nicely math?

  • @kenfrank2730

    @kenfrank2730

    8 ай бұрын

    I would like to know also.

  • @user-hi8vb8rg5s
    @user-hi8vb8rg5s Жыл бұрын

    Good job

  • @morgengabe1
    @morgengabe18 ай бұрын

    Honestly, using Re on euler's theorem that way is more impressive than feynman's technique, imo. That's precisely the sort of chicanery that i started to love these subjects for! edit: first time I saw that integral was statistical mechanics and the professor just gave the formula without proof or derivation. In numerical methods we got to see montecarlo integration, and that's probably my favourite integration method. Didn't see any of this in complex variables, which I went on to fail.

  • @MSloCvideos
    @MSloCvideos10 ай бұрын

    Calling it Feynman's technique makes it appear as though it took centuries to develop it, when in reality this is also known as Leibniz's rule after one of the creators of integral calculus, so it was actually known pretty much since integration became a thing.

  • @csharpmusic9866

    @csharpmusic9866

    8 ай бұрын

    Hey, just to add to your knowledge the lebinitz rule basically deals with differentiating a function under integration, whereas Feynman's techinque is a way to find definite integrals of non integrable functions by introduction of a parameter while 'using' the lebinitz rule as a smart tool and hence " lebinitz rule is different from Feynman's techinque, one helps the other."

  • @epikherolol8189

    @epikherolol8189

    3 ай бұрын

    Nah Leibnitz rule is different.

  • @michaeljoseph8554
    @michaeljoseph85549 ай бұрын

    Just another example of why we should be having people take complex analysis

  • @quorbsky3237
    @quorbsky3237 Жыл бұрын

    An integral of a complex function equates to a real number.

  • @ashishraje5712
    @ashishraje57125 ай бұрын

    Brilliant

  • @ropefreeze1660
    @ropefreeze16608 ай бұрын

    When you set up the steps wrong and start trying to solve this on your calc test

  • @matthiasehrhardt3469
    @matthiasehrhardt3469 Жыл бұрын

    At 5:00. This integral can be determined easily by switching to a 2D integral in polar coordinates. No need to use formulas from books.

  • @faismasterx
    @faismasterx8 ай бұрын

    Where did the pi under the first radical come from in the last line? Shouldn't it just be root 2 of root 2 multiplied by sin pi/8?

  • @atmanh8372
    @atmanh83722 ай бұрын

    3 months ago I understood none of these.Now I finally understand it

  • @maths_505

    @maths_505

    2 ай бұрын

    Hell yeah 🔥

  • @ricardoruiz3248
    @ricardoruiz32488 ай бұрын

    I'd like to ask what's the device you record on? 👀

  • @jamesalton8703
    @jamesalton87038 ай бұрын

    There are two points at which the technique used here needs further explanation: where the derivative of the integral becomes the integral of the derivative of the integrand, and the reason given is because the integrand is clearly bounded; the more crucial point is where part of the integrand is replaced by the real part of a complex term, and it is then assumed that integrating the integrand with the full complex term and then, when the integration is done, taking the real part, so discarding the imaginary part, is an equivalent result to integrating without the complex term replacement - that is quite an assumption since throughout the subsequent manipulations of the complex terms some real terms become imaginary and some imaginary terms become real, so some imaginary terms contribute to the real result, but the technique seems to rely on the imaginary part of the original complex replacement having no effect on the real part.

  • @charlesbromberick4247
    @charlesbromberick42479 ай бұрын

    As Feynman once told us at Cal Tech, "F... the 2pi".

  • @taranmellacheruvu2504
    @taranmellacheruvu25049 ай бұрын

    Wouldn’t the constant of integration be part of the argument of Re() because the integral da was within Re()?

  • @user-nw7qn8nm1t
    @user-nw7qn8nm1t11 ай бұрын

    Please tell me why we take just real part in 3:43. I see that we need just cos but I do not undersfand how can we ingore sin part of Eular formula.

  • @Outcast_Raj
    @Outcast_Raj Жыл бұрын

    can u make a video about the feynman technique itself ?

  • @oximas-oe9vf
    @oximas-oe9vf Жыл бұрын

    This is wizardry 😮😮

  • @robj144
    @robj144 Жыл бұрын

    Nice video and cool trick. I've never seen integrals written like a rho though. ;) Good job though.

  • @paulsccna2964
    @paulsccna29649 ай бұрын

    Kept wondering how to do this...simple.

  • @MathswithHiteshsir
    @MathswithHiteshsir8 ай бұрын

    Which app you use for writing please tell me

  • @Temon0942
    @Temon09428 ай бұрын

    Why Am i loving watching integration videos

  • @Jorgensen07

    @Jorgensen07

    8 ай бұрын

    U r from India bro ?

  • @maths_505

    @maths_505

    8 ай бұрын

    You have been chosen.....

  • @YodaWhat
    @YodaWhat8 ай бұрын

    Interesting... but of course, *one must know _when and where_ it is true that _each step is valid_ if one is to apply the technique more generally. Which makes me wonder: How would 3Blue1Brown explain this?

  • @coryloveless6526
    @coryloveless6526 Жыл бұрын

    Awesome.