Integral of ln(cos x)

We calculate the definite integral of ln(cos x) over the interval from 0 to pi/2.
Playlist: • Interesting Integrals
www.michael-penn.net
www.randolphcollege.edu/mathem...

Пікірлер: 358

  • @CoderboyPB
    @CoderboyPB4 жыл бұрын

    It's amazing, I understand it, but I would never get to these ideas, especially using the trigonometric identities, but that's the reason why I failed my math studies: I was interested but never reached this manditory meta level ... But I like this videos, because even, If I failed, I never broke up with the mathmatics. Greetings from Germany, your vids help me to come to these hard corona times in social distance. Stay healthy :-)

  • @MichaelPennMath

    @MichaelPennMath

    4 жыл бұрын

    I am happy to hear you like the videos! Luckily my chalkboard is in my basement, so I can make videos without venturing out.

  • @JinTsen

    @JinTsen

    4 жыл бұрын

    I have the same thing. I love to see such beautiful solutions and I loved to try to find them, but I lacked the (as you called it) meta understanding to find them like that. But I still love math and still love to watch videos and learn more. Recently found this channel and absolutely love it.

  • @ivanmaximenko7227

    @ivanmaximenko7227

    4 жыл бұрын

    Pretty interesting to see such an incredibly easy way to solve this integral! Almost a year ago, at my 2nd uni grade, I've used a parameter differentiate method to calculate it. More later, it was shown how to find a solution using complex calculus:D But the most amazing thing that I've got trying to figure out the answer was a nice series identity for the natural logarithm of 2!

  • @ibrahimahmed804

    @ibrahimahmed804

    4 жыл бұрын

    @@ivanmaximenko7227 Similar thing is happening to me. next year im going to learn complex analysis can't wait to find simpler ways than this godforsaken method. Literally just smack your head on the chalkboard and hope to the math gods you dont make a mistake on any step.

  • @leif1075

    @leif1075

    4 жыл бұрын

    Don't you think you could reach that meta level if you keep practicing?

  • @iamtrash288
    @iamtrash2884 жыл бұрын

    What a sly method. Absolutely amazing

  • @adamjennifer6437

    @adamjennifer6437

    3 жыл бұрын

    Just watch this impressive Math channel kzread.info/dron/ZDkxpcvd-T1uR65Feuj5Yg.html

  • @isambo400
    @isambo4003 жыл бұрын

    “U equals zero” damn he’s right

  • @chae5833
    @chae58334 жыл бұрын

    Wow...this was really impressive. I've just started Calculus 2 and am learning integration by parts. It's a tricky process that requires so much knowledge in order to do efficiently/effectively. I'm okay on my Pythagorean identities, but I need to get all the double and half angle identities down. Definitely subscribed and will keep watching these cool problems. Thanks Michael!

  • @terdragontra8900

    @terdragontra8900

    4 жыл бұрын

    Have you seen a geometric proof of the double angle formulas (or more generally the sum of angle formulas)? Its simple enough that once youve seen it you can quickly sketch it out again and and rederive the formulas if you forget. Not to mention they're just interesting!

  • @decentman7555

    @decentman7555

    3 жыл бұрын

    kzread.info/dash/bejne/q5OM2bOkk8vdoqg.html

  • @adamjennifer6437

    @adamjennifer6437

    3 жыл бұрын

    Just watch this impressive Math channel kzread.info/dron/ZDkxpcvd-T1uR65Feuj5Yg.html

  • @wolfmanjacksaid
    @wolfmanjacksaid4 жыл бұрын

    Whenever I see a new video like this I say "Ok, great"

  • @Quantum-Entanglement

    @Quantum-Entanglement

    3 жыл бұрын

    Makes you wonder why. Is it faster to compute than an antiderivative for a computer or something?

  • @ashotdjrbashian9606
    @ashotdjrbashian96062 жыл бұрын

    This integral (with sinx instead of cosx) was calculated by Euler more than 250 years ago. You have used a similar idea, but Euler goes backwards, and that makes calculation so much easier. First, he does the substitution x=2t and makes I=ln2*pi/2+ two integrals of 2ln(sint) and 2ln(cost), both from 0 to pi/4. In the second one he does change t=pi/2-u, which makes that an integral of 2ln(sinu) from pi/4 to pi/2. Combining together gives him 2I and all said. It takes literally two lines!

  • @WiKo-wg3mj
    @WiKo-wg3mj3 жыл бұрын

    It's awesome, the way you demonstrated, step by step. Thumbs up! I really liked the process which is clearly understandable . Thanks you so much. However i've just one question, I would like to know, is there an other trick more easier and faster than that you've just done to get to the solution ?

  • @bastiangeissbuhler
    @bastiangeissbuhler3 жыл бұрын

    Amazing, im from chile and i was triying to solve that integral for a while and when i give up, KZread suggest me this video, is like fallen from heaven

  • @hg1288
    @hg12883 жыл бұрын

    Thanks for the explanation above. I like this sort of maths but I can never achieved the mental acrobatic that you can do but I enjoy stressing my brain in following it. However, using my calculator, it cannot even come out with lncos(x) but using lnsin(x) I got a complex number answer as -1.0888 - 4.4409x10^16i.

  • @bmenrigh
    @bmenrigh3 жыл бұрын

    This is probably the first video where I knew exactly where the method was going. I must have seen a trick like this before. Perhaps in solving certain infinite sums that use the same looping substitution / equality trick.

  • @chazzaca
    @chazzaca Жыл бұрын

    Great video Michael. If you integrate x/tanx from pi/2 to 0 (using integration by parts) you will use all the properties you've specified here

  • @rc210397
    @rc2103973 жыл бұрын

    From the thumbnail I tried doing it in my head by simply integrating the initial term and my answer was negative infinity (obviously), and when I saw the video my jaw literally dropped (again, obviously) Such an elegant method :D

  • @Ohm_

    @Ohm_

    3 жыл бұрын

    How did you "simply integrate" that?

  • @kilian8250

    @kilian8250

    2 жыл бұрын

    What do you mean?

  • @mathhack8647

    @mathhack8647

    2 жыл бұрын

    this is what Neuroscientist call it. the " HA" moment. That's when you find the hidden pattern within a pixellized photo for example.

  • @rc210397

    @rc210397

    2 жыл бұрын

    I did it wrong in my head guys

  • @erazorheader
    @erazorheader3 жыл бұрын

    Another way to get rid of ln(z) is to consider the derivative d(z^t)/dt which yield ln(z) at t = 0. Thus it suffices to calculate int_0^{\pi/2} (cos(x))^t dx which results in beta-function after trivial change of variables. After all it will be possible to represent the answer in terms of digamma function. But the simplest way here is to use cos(x) = (e^{ix} + e^{-ix})/2, so ln(cos(x)) = -ln(2) + ix + ln(1 + e^{-2 ix}) = -ln(2) + i x + sum_{n = 1}^\infty (-1)^{n - 1} e^{-2 i n x} / n. As ln(cos(x)) is a real number, we can throw away the imaginary part (because it is zero): ln(cos(x)) = -ln(2) + sum_{n = 1}^\infty (-1)^{n - 1} cos(2 n x)/n As integral from cos(2 n x) within the interval (0, pi/2) yields zero, we get -ln(2) * pi/2.

  • @adamjennifer6437

    @adamjennifer6437

    3 жыл бұрын

    Just watch this impressive Math channel kzread.info/dron/ZDkxpcvd-T1uR65Feuj5Yg.html

  • @GreenMeansGOF
    @GreenMeansGOF9 ай бұрын

    How do we show this function is integrable?

  • @andcivitarese
    @andcivitarese4 жыл бұрын

    Integral from 0 to pi of ln(sin x) equals 2 times “I” since sin x is an even function with respect to x=pi/2, and so is ln(sin x)

  • @AnlamK

    @AnlamK

    3 жыл бұрын

    Yes, I thought exactly the same thing but I think his substitution argument is a lot more rigorous.

  • @cammyboy31
    @cammyboy314 жыл бұрын

    Could you also do this integral by differentiating under the integral sign? Set I(a) = integral of ln(cos ax ) and differentiate with respect to a, then perform a u-sub?

  • @saurabhrawat5650
    @saurabhrawat56503 жыл бұрын

    It is the exact same question in our NCERT book (class 12). I have done this problem at least 7-8 times during my preparation for the final exam. I already knew what was the answer.😅

  • @harshpratapsingh2075
    @harshpratapsingh20753 жыл бұрын

    Or simply use 2 properties of definite integration But it is good that u showed us each step

  • @vbcool83
    @vbcool834 жыл бұрын

    Tried using the fact that the definite integral between 0 to pi/2 is same for ln(sin(x)) and ln(cos(x)), then added both leading to the integral being half of the sum of those definite integrals. Then used ln a + ln b = ln ab which yields ln sinx + ln cos x = ln sin 2x - ln 2. This gives the identity I = I/2 - pi/4 ln 2

  • @ShubhamKumar-sj6dp

    @ShubhamKumar-sj6dp

    4 жыл бұрын

    But will not I/2 = integral(ln(cos^2x)) which I think will not be equal to ln(cosx)

  • @chrisli4735
    @chrisli47354 жыл бұрын

    amazing, i believe such beautiful solution comes from countless practices.

  • @argonwheatbelly637

    @argonwheatbelly637

    4 жыл бұрын

    Like any language => Art, e.g. math, writing, music--performance, fine, or utilitarian. And more...

  • @AmanGupta-sj1rx
    @AmanGupta-sj1rx3 жыл бұрын

    I had first time understand it's proof. 🤔 In the beginning I just memorized the whole thing.🔥 Thanks for these beautiful and elegant explanation 🥰🔥

  • @adamjennifer6437

    @adamjennifer6437

    3 жыл бұрын

    Just watch this impressive Math channel kzread.info/dron/ZDkxpcvd-T1uR65Feuj5Yg.html

  • @resamensuri3719
    @resamensuri37193 жыл бұрын

    Very beautiful way to solve this integral

  • @eduardomeza4548
    @eduardomeza45483 жыл бұрын

    Will you do the convergence method for the integral?

  • @conrad5342
    @conrad53423 ай бұрын

    How about switching the order of the functions? Could you integrate cos( ln x ) ?

  • @malawigw
    @malawigw4 жыл бұрын

    Taking the integral to the u world

  • @wikingandersson2561

    @wikingandersson2561

    3 жыл бұрын

    And back. Twice.

  • @decentman7555

    @decentman7555

    3 жыл бұрын

    kzread.info/dash/bejne/q5OM2bOkk8vdoqg.html

  • @adamjennifer6437

    @adamjennifer6437

    3 жыл бұрын

    Just watch this impressive Math channel kzread.info/dron/ZDkxpcvd-T1uR65Feuj5Yg.html

  • @chazzbunn7811
    @chazzbunn78113 жыл бұрын

    You explain how to solve the integral, but you should also explain why you do some of the things you do. For example, you could explain why you made that particular substitution near the beginning. If I knew why you did that it could very well be useful to me for future problems. Just something to consider.

  • @jeremycai5870
    @jeremycai58703 жыл бұрын

    Could you still do the dummy substitution thing if it is an indefinite integral?

  • @asuka1011
    @asuka10113 жыл бұрын

    厉害啊,这个证明过程真的精彩

  • @BoZhaoengineering
    @BoZhaoengineering4 жыл бұрын

    The dummy variables changes back to x . That helps a lot. And you set the integral equal to I , it helps a lot too.

  • @argonwheatbelly637

    @argonwheatbelly637

    4 жыл бұрын

    U-sub was the thing I remember students blowing off in college, because they would cram everything onto one line as well. I was taught to eat the paper vertically, and use a pencil. U-sub helped me a whole lot! It's like getting your own part score transposed for you from the orchestral score, but you're the conductor! Ok, yes, music is important to me, but also it's the quadrivial equivalent to calculus. And I love the seven Liberal Arts!

  • @pablonaterabravo4370

    @pablonaterabravo4370

    3 жыл бұрын

    @@argonwheatbelly637 I don't know why, but I find cool the fact that you related maths with your Passion with music in that way

  • @lecinquiemeroimage

    @lecinquiemeroimage

    3 жыл бұрын

    I am sorry but you need to prove that I exists! Your method IS NOT VALID because lim ln(cosx) = - ∞, when x → (π/2)⁻ (we have also lim ln(sinx) = -∞, when x → 0⁺) You made FORBIDDEN operations on the infinites! You used the same method than when you calculated ∫₀ₐ √sinx dx/(√sinx + √cosx) with a = π/2, which was very very easy to determinate, BUT NOT so easy with a = π/4 : try to do it! Try also to calculate K = ∫₀ₐ ln(cosx) dx with a = π/4 : not so easy, too! To serve you and your followers. Greetings from Paris.

  • @oscardasilva971
    @oscardasilva9713 жыл бұрын

    Blessed KZread Recommendation 🙏

  • @decentman7555

    @decentman7555

    3 жыл бұрын

    kzread.info/dash/bejne/q5OM2bOkk8vdoqg.html

  • @martijn130370
    @martijn1303704 жыл бұрын

    Amazing, I thought this was an impossible one!!

  • @valdeircuite9052
    @valdeircuite90523 жыл бұрын

    It's amazing!

  • @danibarack552
    @danibarack5524 жыл бұрын

    I thought of writing cosx as Re(e^ix) and then take the real part all the way to the outside of the integral, so you have Re(integ(ln(e^ix))= Re(integ(ix))= Re(i/2*x^2) from 0 to pi/2 =Re(i*pi^2/8 + 0) =0 Obviously this is wrong but where exactly? Did I use the real part wrong?

  • @GeoQuag

    @GeoQuag

    4 жыл бұрын

    The Re does not commute with the ln

  • @MercureYgg

    @MercureYgg

    3 жыл бұрын

    Careful, you have written (line 1 - 2): « ln(exp(ix)) = ix » because you thought that ln can be applied to complex exponential like the natural exponential fonction, which is not the case (it more complicated), thus, here lies the error. The ln function you are using is defined in R+* (or ]0; +Infinity[) whereas exp(ix) is a complex.

  • @user-um3ui1gu9t
    @user-um3ui1gu9t2 жыл бұрын

    Refreshing !

  • @VSP4591
    @VSP45913 жыл бұрын

    Very elegant solution.

  • @Jason-ot6jv
    @Jason-ot6jv4 жыл бұрын

    I loved that technique, great!

  • @lecinquiemeroimage

    @lecinquiemeroimage

    3 жыл бұрын

    I am sorry but you need to prove that I exists! Your method IS NOT VALID because lim ln(cosx) = - ∞, when x → (π/2)⁻ (we have also lim ln(sinx) = -∞, when x → 0⁺) You made FORBIDDEN operations on the infinites! You used the same method than when you calculated ∫₀ₐ √sinx dx/(√sinx + √cosx) with a = π/2, which was very very easy to determinate, BUT NOT so easy with a = π/4 : try to do it! Try also to calculate K = ∫₀ₐ ln(cosx) dx with a = π/4 : not so easy, too! To serve you and your followers. Greetings from Paris.

  • @fioncth
    @fioncth3 жыл бұрын

    Michael Penn, what makes you know how to solve in this way ? just curious

  • @paologrisanti7865
    @paologrisanti78654 жыл бұрын

    Just amazing! Thankyou!

  • @decentman7555

    @decentman7555

    3 жыл бұрын

    kzread.info/dash/bejne/q5OM2bOkk8vdoqg.html

  • @boumedienemeddah7828
    @boumedienemeddah78283 жыл бұрын

    That's really great Michael!

  • @decentman7555

    @decentman7555

    3 жыл бұрын

    kzread.info/dash/bejne/q5OM2bOkk8vdoqg.html

  • @benheideveld4617
    @benheideveld4617 Жыл бұрын

    And that is a good place to finish this video!

  • @roland6965
    @roland69653 жыл бұрын

    Gracias ahora ya pude entender mejor las integrales

  • @imran8295
    @imran82953 жыл бұрын

    Can't we use by parts to solve in wothout any substitution

  • @TimeforDROPS
    @TimeforDROPS4 жыл бұрын

    Why can we do change of variables back to x x = u, when we have ever used the substitution x = pi/2 - u, thanks for your answer

  • @MichaelPennMath

    @MichaelPennMath

    4 жыл бұрын

    It isn't super necessary, the main reason is to make everything "look" the same so that the integrals can be easily compared and combined.

  • @damianmatma708

    @damianmatma708

    4 жыл бұрын

    03:09 We can do this because "∫ ln(sin(_) d_" means the same no matter which letter you put into "_" (the same is also for definite integral from any "a" to any "b", for example for definite integral from 0 to π/2). For example "∫ ln(sin(A) dA" means the same as "∫ ln(sin(α) dα" and "∫ ln(sin(u) du" and "∫ ln(sin(x) dx". So we use this property to change letter (to change the variable) from "u" to any letter we want. And in this case we want this "any letter" be "x" :) So instead of writing "∫ ln(sin(u) du" we could write "∫ ln(sin(x) dx". I hope this is helpful and makes it understable :)

  • @mohammadfahrurrozy8082

    @mohammadfahrurrozy8082

    4 жыл бұрын

    @@damianmatma708 thank you very much

  • @raphaeljacobs3518

    @raphaeljacobs3518

    4 жыл бұрын

    @@MichaelPennMath This only works with definite integrals, right?

  • @jackrogers1498

    @jackrogers1498

    4 жыл бұрын

    Damian Matma but that’s still doesn’t change the fact that the original sub was pi/2 - x, he goes on to use the double angle identity, sin(A+B) = sin(A)cos(B) + sin(B)cos(A) and uses it to get 1/2sin(2x) but this is only true for when A=B which in this case it doesn’t does it? Because he’s saying x = pi/2- x for all x, which isn’t true

  • @sadegharefnezhad1635
    @sadegharefnezhad16353 жыл бұрын

    Just write cos(x) = (exp(ix)+exp(-ix))/2. It would be much easier to solve.

  • @plusqueparfait6759
    @plusqueparfait675910 ай бұрын

    how do you calculate "integrale ln(2+cosx) dx"?

  • @anthonygreven2811
    @anthonygreven28113 жыл бұрын

    Wouldn't it be easier if you do u=cos(x) and then do an integration by parts?

  • @saadgrouli
    @saadgrouli4 жыл бұрын

    Thanks

  • @ohiovic1236
    @ohiovic12363 жыл бұрын

    This problem can be solved using Maclaurin's expansion

  • @phythematics2188
    @phythematics21884 жыл бұрын

    I was able to do this when I was in school. Love your videos ❤️

  • @UnforsakenXII
    @UnforsakenXII4 жыл бұрын

    I've found a new way to do this integral but it involves gamma functions and exponential integrals. = D

  • @decentman7555

    @decentman7555

    3 жыл бұрын

    kzread.info/dash/bejne/q5OM2bOkk8vdoqg.html

  • @jeager_07

    @jeager_07

    3 жыл бұрын

    Yup that one is pretty easy

  • @thecrew8576
    @thecrew85763 жыл бұрын

    Thanks a lot

  • @casa1420
    @casa14203 жыл бұрын

    Very good!

  • @DS-qg9cd
    @DS-qg9cd3 жыл бұрын

    I might be missing something,but the log has a singularity at x=0, why does it still workout?

  • @whyyat3470
    @whyyat34702 жыл бұрын

    I love Dr Penn's videos, but am I the only one who has to pause the video so my ears can catch their breath?

  • @cameronspalding9792
    @cameronspalding97923 жыл бұрын

    In order to prove that ln(cos x) is integrable on the interval we can use the comparison test

  • @cicik57
    @cicik572 жыл бұрын

    can you solve that for any bounds?

  • @LouisEmery
    @LouisEmery3 жыл бұрын

    If you were to plot the cos(x) and sin(x) (without the log) from 0 to pi/2 one would realize immediately the symmetries.

  • @famoxyzfamoxyz7027
    @famoxyzfamoxyz70273 жыл бұрын

    So, basically the area under this curve evaluates to a negative value? Does it simply mean that the plot of ln(cosx) lies below the x-axis?

  • @adamjennifer6437

    @adamjennifer6437

    3 жыл бұрын

    Just watch this impressive Math channel kzread.info/dron/ZDkxpcvd-T1uR65Feuj5Yg.html

  • @spartacus8875
    @spartacus88753 жыл бұрын

    Mathematics ,"feeling so good today" thank you

  • @decentman7555

    @decentman7555

    3 жыл бұрын

    kzread.info/dash/bejne/q5OM2bOkk8vdoqg.html

  • @kabsantoor3251
    @kabsantoor32513 жыл бұрын

    Too much time and effort went into proving that Integral of ln(cos x) equals that of ln(sin x). I think that is trivial! First notice that for each x in the interval [0,pi/2] there corresponds a y = (pi/2 -x) such that ln(cos x) = ln(sin y) ,so that the integrands match for every x, y, respectively . If we now consider the integral as a Riemann sum, the result is obvious! Great video, BTW

  • @lecinquiemeroimage

    @lecinquiemeroimage

    3 жыл бұрын

    I am sorry but you aneed to prove that I exists! Your method IS NOT VALID because lim ln(cosx) = - ∞, when x → (π/2)⁻ (we have also lim ln(sinx) = -∞, when x → 0⁺) You made FORBIDDEN operations on the infinites! You used the same method than when you calculated ∫₀ₐ √sinx dx/(√sinx + √cosx) with a = π/2, which was very very easy to determinate, BUT NOT so easy with a = π/4 : try to do it! Try also to calculate K = ∫₀ₐ ln(cosx) dx with a = π/4 : not so easy, too! To serve you and your followers. Greetings from Paris.

  • @ActualSubstance
    @ActualSubstance3 жыл бұрын

    The u-sub of x=u @ 3:05 seems a little fishy to me. I feel like the x on either side of the equation aren't exactly the same x, which would prevent us from using the the trig identities later. Anyone have any thoughts?

  • @davidemasi__

    @davidemasi__

    Жыл бұрын

    Sorry for answering after so much time, but the variable you use isn't important. In fact, if F is an antiderivative of ln(sin u), that integral is F(u) evaluated from u=0 to u=pi/2, which is F(pi/2) - F(0), but this is also F(x) evaluated from x=0 to x=pi/2. That's why you can use whatever variable and sometimes apply this substitution, just to deal with the same variable. Hope I was clear enough.

  • @asp2194
    @asp21944 жыл бұрын

    Very nice

  • @taresy6789pp
    @taresy6789pp3 жыл бұрын

    Why does integration by parts udv=uv-vdu not work

  • @user-lo5oz1qt6n
    @user-lo5oz1qt6n3 жыл бұрын

    なるほど。そうやるのか!!Amazingすぎる

  • @argonwheatbelly637
    @argonwheatbelly6374 жыл бұрын

    This is relaxing on so many levels...because to me, math is one of the Language Arts, not merely a Science; this being a fun story to read.

  • @pfscpublic
    @pfscpublic3 жыл бұрын

    Make sense that the identical +ve areas under two similar trig curves 0->pi/2 could end up being the same

  • @cbarnett1814
    @cbarnett1814 Жыл бұрын

    I am a huge fan, but this one seems odd. I feel like michael penn did nearly the same U substitution over and over and over. Is there really not a way to solve this with fewer steps? Michael? Anyone?? .?

  • @kpk7867
    @kpk78673 жыл бұрын

    is it okay to locate zero in logarithm?

  • @edwardjcoad
    @edwardjcoad4 жыл бұрын

    Can someone tell me why if I use Re{e^ix} and sub into the equation...which I believe will result in Re{ix} which equals 0 which then integrates to 0.

  • @_Ytreza_

    @_Ytreza_

    4 жыл бұрын

    Re(ln(exp(ix))) is not the same as ln(Re(exp(ix)))

  • @rachidboumeftah5229
    @rachidboumeftah52293 жыл бұрын

    Verry good.👍

  • @richardfarrer5616
    @richardfarrer56164 жыл бұрын

    One minor variation at the end. I used u = pi - x instead for the last substitution.

  • @brianart8700

    @brianart8700

    4 жыл бұрын

    I was curiosas as to why he used u=x in the second substitution instead of u=pi/2 - x to return to the x world. Wouldn’t using u=x take him into a different variable? I know pi\2 is a constant but it must influence it some way right?

  • @jasonkrause1723

    @jasonkrause1723

    4 жыл бұрын

    @@brianart8700 I'm missing something too; when he puts the two 'I's together, those x variables represent different things. If they don't, if u = x, then by his first subs x = pi/2 - x, then x = pi/4. The equation of 2 I = ..., this is only true when x = pi/4

  • @brianart8700

    @brianart8700

    4 жыл бұрын

    Jason Krause Yes, I agree. I do Engineering for a living so I have some math background. On my free time, I like to find these problems and solve them prior to seeing the solution. This is one of those that did not add up.

  • @giacomovicentini3495

    @giacomovicentini3495

    4 жыл бұрын

    Brian Art When you are working with an indefinite integral (where the result is a function) you have to change the variable at the end, and you cannot just say u=x for example, and in this context you’re right, but with definite integrals (where the result is a number) you can treat every variable like a dummy variable, because the area under the graph of f(x) and f(u) are the same. Keep in mind that you’re dealing with the change of variable issues when you find dx in terms of u and du, and when you change the bounds from x to u. Hope this helped, i can redo it if you want! If you have other questions feel free to ask!

  • @lecinquiemeroimage

    @lecinquiemeroimage

    3 жыл бұрын

    I am sorry but you need to prove that I exists! Your method IS NOT VALID because lim ln(cosx) = - ∞, when x → (π/2)⁻ (we have also lim ln(sinx) = -∞, when x → 0⁺) You made FORBIDDEN operations on the infinites! You used the same method than when you calculated ∫₀ₐ √sinx dx/(√sinx + √cosx) with a = π/2, which was very very easy to determinate, BUT NOT so easy with a = π/4 : try to do it! Try also to calculate K = ∫₀ₐ ln(cosx) dx with a = π/4 : not so easy, too! To serve you and your followers. Greetings from Paris. P.S : in France: x → (π/2)⁻ means x → (π/2) and x < π/2

  • @jeanbaptistedebret
    @jeanbaptistedebret3 жыл бұрын

    Muito bom

  • @user-bn6hn5ew1n
    @user-bn6hn5ew1n3 жыл бұрын

    すげぇ

  • @bat2133
    @bat21334 жыл бұрын

    Wowwwwwww Can someone tell how he repose u = x at min 3 Initially he posed u = pi/2 - x Wtf

  • @andersonferreira2980

    @andersonferreira2980

    3 жыл бұрын

    The 'u's are diferent variables in each part.

  • @DeanCalhoun

    @DeanCalhoun

    3 жыл бұрын

    substitution is an equivalent process, so the name of the variable doesn’t matter. it won’t change the value of the integration. he could have changed it to t, or w, or whatever, he just changed it back to x for the sake of consistency.

  • @hybmnzz2658

    @hybmnzz2658

    3 жыл бұрын

    Strictly speaking it was a "mistake" or bad notation but really this is how you should think of definite integrals. The variable inside is nothing but a dummy variable. Once you get used to this you'll yawn and not keep track of what letters you have already used.

  • @imran8295

    @imran8295

    3 жыл бұрын

    That is the differential dx=du

  • @woodithwoodard3132

    @woodithwoodard3132

    3 жыл бұрын

    I was wondering something similar and looking down here for answers. How can he say u = 2x and then in the next step say x = u to get the variable back to x? He did this twice. I guess it doesn't matter.

  • @noelvarco1
    @noelvarco12 жыл бұрын

    Can someone explain how Michael can do a change of variable at 2:56 by defining x=u? I thought he defined x=pi/2-u earlier, why can he change it?

  • @user-cr4fc3nj3i

    @user-cr4fc3nj3i

    2 жыл бұрын

    this is a common trick called dummy variable, the thing is that an integral is independent of its variable, below is an example: ∫ 2x dx = ∫ 2y dy they both mean finding an anti-derivative of f(z)=2z similarly, ∫ ln(sin u) du and ∫ ln(sin x) dx are both the anti-derivative of f(z)=ln(sin z), thus they are technically the same.

  • @spuriustadius5034
    @spuriustadius50344 жыл бұрын

    It was cool to see the solution, but it makes me wonder about how Michael chose his strategy for computing it. What I mean is after the substitutions and change of limits, there's still a natural log of a trig function in the integrand. If I were doing this problem, that would make me think I was on the wrong track *unless* I could see several steps "into the future" and realize that this strategy is really all about figuring out a relation for the integral-- and not explicitly computing it. How does one know that this strategy will work? How do you know that by making these substitutions, you will end up with a useable relation for the integral?

  • @auzzffozzie4309

    @auzzffozzie4309

    4 жыл бұрын

    At some point you will find in your studies that experience plays a key part in how you solve things after looking at them. He probably pounded away at substitutions for a hot minute before realizing it was going in circles. At this point it reminded me of the special integral of ((e^x)*sin(x)) that one has a very similar methodology

  • @spuriustadius5034

    @spuriustadius5034

    4 жыл бұрын

    @@auzzffozzie4309 Thanks, I was wondering if there was some clue about this problem that suggested this approach as solution. Is there a name for this approach of making substitutions to arrive at some expression that gives you an equation for the integral (without actually computing the integral)? My approach would have been to attempt to integrate this as series expansion with the aspiration of cancelling all but one term!

  • @zoedesvl4131
    @zoedesvl41313 жыл бұрын

    This integral is every calculus student should learn. The idea of evaluating integral indirectly? Check. Classic application of the properties of trigonometric functions? Check. Change of variable? Check.

  • @oscardavidalarcon2673
    @oscardavidalarcon26733 жыл бұрын

    Te amo ♥️

  • @noahschulz1718
    @noahschulz17183 жыл бұрын

    This could be done pretty quickly using the complex definitions of cos? The e terms would just cancel?

  • @megauser8512

    @megauser8512

    3 жыл бұрын

    No, not really, since it would just be ln([e^ix+e^-ix]/2), which =/= ln(e^ix)+ln(e^-ix)

  • @user-hi8vb8rg5s
    @user-hi8vb8rg5s10 ай бұрын

    Cool Thank you

  • @bienvenukodjia9996
    @bienvenukodjia99963 жыл бұрын

    Thanks you

  • @akka5326
    @akka53263 жыл бұрын

    Does it apply to the wakanda maths tho ?

  • @a.osethkin55
    @a.osethkin552 жыл бұрын

    Genius

  • @thomashoffend4299
    @thomashoffend42993 жыл бұрын

    Why is it that in RL problems if I try a trick like this I end up with I = I; in other words the trick doesn't work.

  • @cillo71
    @cillo714 жыл бұрын

    It is curious that you may not use Euler's formula to solve this...maybe there is a way...but it must be more complicated. If you take the natural logarithm of Euler's formula it is directly (cos x + i sen x). But your way is the best, well done ¡¡

  • @_Ytreza_

    @_Ytreza_

    4 жыл бұрын

    How do you go from ln(cos x) to cos x + i sin x ? They are clearly not equal

  • @elyades2480
    @elyades24804 жыл бұрын

    I tried to do this integral using Integration by parts, differentiating ln(cos(x)) and integrating 1 with respect to x. I ended up with having to integrate xtan(x), and that's where I got stuck. I tried to convert tan(x) into its complex form, but that didn't help me a lot. Do you think it's doable this way? Other than that, I loved the video. Your way of explaining the solution is very clear.

  • @chaoticoli09

    @chaoticoli09

    4 жыл бұрын

    Elyâdés Can’t you just use integration by parts on int x*tanx dx? Doable provided you know how to integrate tanx.

  • @damianmatma708

    @damianmatma708

    4 жыл бұрын

    Yes, it is doable that way. blackpenredpen did it: kzread.info/dash/bejne/gqicq8ehnca0e6Q.htmlm26s

  • @elyades2480

    @elyades2480

    4 жыл бұрын

    Thanks, to both of you. I figured it out

  • @elyades2480

    @elyades2480

    4 жыл бұрын

    @@damianmatma708 your video is the integral of cos(ln x), this one is ln (cosx)

  • @tomctutor

    @tomctutor

    4 жыл бұрын

    I ended up trying to do byparts ending with an Int(xtanx.dx) term also, how did you figure this one out? PS I know that Int(xtanx.dx)= Int(x [ln(secx)]'.dx) but that just brings you back to start again in the original byparts! Finally noticed (as did *@Vijay Bhaskar* above): since cos(x).sin(x) = (1/2)sin(2x), ln(cosx.sinx) = -ln(2)+ln(sin(2x)) => ln(cosx)+ln(sinx) = -ln(2)+ln(sin(2x)) taking def. int both sides: 2I = -(pi/2)ln2 + def.int{ln(sin2x).dx} 2I = -(pi/2)ln2 + I ... since last def. int is same as I or I = -(pi/2)ln2.

  • @victorjesequel9517
    @victorjesequel95173 жыл бұрын

    Good trick

  • @user-vl9js8hx8m
    @user-vl9js8hx8m3 жыл бұрын

    How about integral from 0 to pi/4

  • @richardkimn
    @richardkimn3 жыл бұрын

    y is definitely an imaginary number in the range of x:p1/2i~3/2pi. What is the value of the definite integral of the range?

  • @lecinquiemeroimage

    @lecinquiemeroimage

    3 жыл бұрын

    I am sorry but you are COMPLETELY WRONG; because I = J = -∞ !!! Your method IS NOT VALID because lim ln(cosx) = - ∞, when x → (π/2)⁻ (we have also lim ln(sinx) = -∞, when x → 0⁺) You made FORBIDDEN operations on the infinites !!! You used the same method than when you calculated ∫₀ₐ √sinx dx/(√sinx + √cosx) with a = π/2, which was very very easy to determinate, BUT NOT so easy with a = π/4 : try to do it ! Try also to calculate K = ∫₀ₐ ln(cosx) dx with a = π/4 : not so easy, too ! You made quite the same error than Ramanujan with his wrong identities, like this one: 1 + 2 + 3 + ..... = - 1/12 To serve you and your followers. Greetings from Paris.

  • @Harshit_Pro
    @Harshit_Pro2 жыл бұрын

    9:57 You could have simply wrote that 1/2 integral of ln(sin x) dx, from 0 to pi as I

  • @pancreasman6920
    @pancreasman69204 жыл бұрын

    Would have solved it totaly diffrent, but interesting seeing a norher perspective of the same thing

  • @lydhrabinojg9341
    @lydhrabinojg93413 жыл бұрын

    Real life most integrals are impossible to solve! Long live Tylor approximations!

  • @MathsIQ
    @MathsIQ3 жыл бұрын

    Wow very nice.....

  • @yousseffarissi5149
    @yousseffarissi51493 жыл бұрын

    We call this a clean demonstration

  • @tomvitale3555
    @tomvitale355513 күн бұрын

    I was wondering where you were headed with this - it seemed you were going around in circles!

  • @merakebfodil982
    @merakebfodil9823 жыл бұрын

    good démonstration!.

  • @adamjennifer6437

    @adamjennifer6437

    3 жыл бұрын

    Just watch this impressive Math channel kzread.info/dron/ZDkxpcvd-T1uR65Feuj5Yg.html

  • @dra4lol
    @dra4lol3 жыл бұрын

    The real fun is to prove the integral does indeed converge..

  • @Ricocossa1

    @Ricocossa1

    2 жыл бұрын

    Bound it from above with 0, and bound ln(sin x) from below with ln x, which gives a finite integral.

  • @qing6045

    @qing6045

    2 жыл бұрын

    @@Ricocossa1 how to bound to x for x near pi/2

  • @Ricocossa1

    @Ricocossa1

    2 жыл бұрын

    @@qing6045 x > sin x for x between 0 and pi/2

  • @Ricocossa1

    @Ricocossa1

    2 жыл бұрын

    @@qing6045 No you're right, we need to bound it from below. So use, cos x > 1 - 2x/pi. So, ln cos x > ln(1 - 2x/pi), And the integral of the term on the right converges.

  • @Walczyk

    @Walczyk

    Жыл бұрын

    No it’s boring

  • @createdoit1932
    @createdoit19323 жыл бұрын

    How much clear you are ...

  • @frenchyf4327
    @frenchyf43274 жыл бұрын

    At 12:23 when turning u back into x why didn’t the bounds on the integral change too?

  • @delroth

    @delroth

    4 жыл бұрын

    He's just renaming the variable inside the integral, it doesn't matter if it's called u or x or α or n, it's just a name for "the thing that moves inside the integral". You could also see it as a "substitution with u = x" (which doesn't change the bounds, since you're not doing any change to the variable) if that makes it clearer for you.

  • @salvatoreee14531
    @salvatoreee145313 жыл бұрын

    I do not understand the substitution that you do at 8:50: why can you transform the integral of ln(sin u) in the integral of ln(sin x), in u is not equal to x but to 2x?

  • @Stop.Arguing

    @Stop.Arguing

    3 жыл бұрын

    Salvatore Di Lorenzo The u's are different variables. If it makes it easier, think of the second u as a w instead, or as u1 and u2.

  • @ahorribleperson3302

    @ahorribleperson3302

    3 жыл бұрын

    @@Stop.Arguing Why are they different variables?