how Laplace solved the Gaussian integral

Learn more calculus from Brilliant: 👉 brilliant.org/blackpenredpen/ (20% off with this link!)
This is actually Laplace's method to evaluate the Gaussian integral, namely the integral of e^(-x^2) from -inf to inf. en.wikipedia.org/wiki/Gaussia... I believe this is a great method because calculus 2 students, with the knowledge of improper integrals and the willingness to see a double integral for the first time, should be able to understand. I will do it the classic way in my new 100 integrals video! Subscribe to ‪@blackpenredpen‬ so you don't miss it!
Here's how to "integrate" e^(-x^2) with the error function: • the impossible integra...
0:00 100 integrals part 2 coming soon
1:10 integral of e^(-x^2) from -inf to inf without using polar coordinates.
14:06 check out Brilliant!
🛍 Shop math t-shirts & hoodies: bit.ly/bprpmerch
10% off with the code "WELCOME10"
----------------------------------------
**Thanks to ALL my lovely patrons for supporting my channel and believing in what I do**
AP-IP Ben Delo Marcelo Silva Ehud Ezra 3blue1brown Joseph DeStefano
Mark Mann Philippe Zivan Sussholz AlkanKondo89 Adam Quentin Colley
Gary Tugan Stephen Stofka Alex Dodge Gary Huntress Alison Hansel
Delton Ding Klemens Christopher Ursich buda Vincent Poirier Toma Kolev
Tibees Bob Maxell A.B.C Cristian Navarro Jan Bormans Galios Theorist
Robert Sundling Stuart Wurtman Nick S William O'Corrigan Ron Jensen
Patapom Daniel Kahn Lea Denise James Steven Ridgway Jason Bucata
Mirko Schultz xeioex Jean-Manuel Izaret Jason Clement robert huff
Julian Moik Hiu Fung Lam Ronald Bryant Jan Řehák Robert Toltowicz
Angel Marchev, Jr. Antonio Luiz Brandao SquadriWilliam Laderer Natasha Caron Yevonnael Andrew Angel Marchev Sam Padilla ScienceBro Ryan Bingham
Papa Fassi Hoang Nguyen Arun Iyengar Michael Miller Sandun Panthangi
Skorj Olafsen Riley Faison Rolf Waefler Andrew Jack Ingham P Dwag Jason Kevin Davis Franco Tejero Klasseh Khornate Richard Payne Witek Mozga Brandon Smith Jan Lukas Kiermeyer Ralph Sato Kischel Nair Carsten Milkau Keith Kevelson Christoph Hipp Witness Forest Roberts Abd-alijaleel Laraki Anthony Bruent-Bessette Samuel Gronwold Tyler Bennett christopher careta Troy R Katy Lap C Niltiac, Stealer of Souls Jon Daivd R meh Tom Noa Overloop Jude Khine R3factor. Jasmine Soni L wan na Marcelo Silva
----------------------------------------
💪 If you would also like to support this channel and have your name in the video description, then you could become my patron here / blackpenredpen

Пікірлер: 737

  • @blackpenredpen
    @blackpenredpen Жыл бұрын

    Learn more calculus from Brilliant: 👉 brilliant.org/blackpenredpen/ (20% off with this link!)

  • @mohamedmareye3132

    @mohamedmareye3132

    Жыл бұрын

    Teacher, I follow the lessons you post on KZread I am studying in the college of maths and physics number whats app please tell me you can help me with maths

  • @user-jb3nr6lm8i

    @user-jb3nr6lm8i

    Жыл бұрын

    sir from where I will get more videos of definite integration

  • @mrintegral7348

    @mrintegral7348

    Жыл бұрын

    kzread.info/dron/oLMpMr0JTdLZz4LPdvOf3A.html

  • @faizurrahmanfr

    @faizurrahmanfr

    Жыл бұрын

    Lol I don't have much time to go to brilliant when we have enough brilliant content on this channel.

  • @user-sv6gk8yn4r

    @user-sv6gk8yn4r

    Жыл бұрын

    Teacher may I know your telegram? I want to ask you something.

  • @jonasdesmedt3965
    @jonasdesmedt3965 Жыл бұрын

    this truly is one of the most integral of all time

  • @keepmehomeplease

    @keepmehomeplease

    Жыл бұрын

    Truly. This integral is, in fact, an integral.

  • @user-lq7lg5jt4k

    @user-lq7lg5jt4k

    Жыл бұрын

    an integral integral

  • @fasebingterfe6354

    @fasebingterfe6354

    Жыл бұрын

    Indeed

  • @ngoins2010

    @ngoins2010

    Жыл бұрын

    The most integral?

  • @knotoftime9680

    @knotoftime9680

    Жыл бұрын

    This integral is indeed an integral

  • @ShaunakDesaiPiano
    @ShaunakDesaiPiano Жыл бұрын

    I like this more than the polar coordinates method because it is far easier to understand. No Jacobian, no different kind of coordinate system, just one substitution (really the second one you could do without the substitution, just by inspection).

  • @holyshit922

    @holyshit922

    Жыл бұрын

    There is no Jacobian probably because substitution is done in iterated integral only (he changed only one variable at the time) Another approach is Gamma function with reflection formula

  • @FleuveAlphee

    @FleuveAlphee

    Жыл бұрын

    This is a computationally brilliant method for sure. However, compared to the polar approach the appearance of pi as a result comes across as the outcome of a somewhat artificial-looking substitution process. In contrast, the polar approach relies on the circular symmetry of the "Bell surface" about the z axis, which makes a pi-related value of the integral fairly obvious. Besides, one can relate the square root in the result to the Gaussian curve being a cross-section of that surface, whilst the squaring of the integral in Laplace's approach looks like a mere trick based on nothing but the factorizability of the exponential. For those who are interested, Dr Peyam in his channel does around 20 different derivations of this result!

  • @purplewine7362

    @purplewine7362

    Жыл бұрын

    @@FleuveAlphee what's an "artificial" looking substitution process?

  • @Xoque551

    @Xoque551

    Жыл бұрын

    @@holyshit922 That might actually be a line of circular reasoning, since many of the proofs of Gamma function integral rely on the Gaussian integral result!

  • @holyshit922

    @holyshit922

    Жыл бұрын

    @@Xoque551 not necessarily circuloar reasoning Reflection formula can be derived from product representation of Gamma function and Euler's product for sine

  • @zhelyo_physics
    @zhelyo_physics Жыл бұрын

    I love this integral! Funnily enough in all the physics exams it is always just given 😅

  • @blackpenredpen

    @blackpenredpen

    Жыл бұрын

    😆

  • @easondu9236

    @easondu9236

    Жыл бұрын

    keep up great work sir

  • @lechatrelou6393

    @lechatrelou6393

    Жыл бұрын

    Because in physic we just use... In math it depends of the subject

  • @renegadedalek5528

    @renegadedalek5528

    Жыл бұрын

    In physics the solution to this integral is an intuitive truth.

  • @_cran

    @_cran

    9 ай бұрын

    You're luckyy in engineering my profs made us do it

  • @AlexandreRibeiroXRV7
    @AlexandreRibeiroXRV7 Жыл бұрын

    Never knew you could solve this without using polar coordinates... excellent video!

  • @abebuckingham8198

    @abebuckingham8198

    Жыл бұрын

    I didn't know you could solve it with polar coordinates so I guess we balance the universe out somehow. 😆

  • @pseudolullus

    @pseudolullus

    Жыл бұрын

    @@abebuckingham8198 It's very quick to solve with polar coordinates, but there is also a 3rd geometric way to solve this integral.

  • @azursmile

    @azursmile

    Жыл бұрын

    They're the two proofs outlined in Wikipedia.

  • @jacoboribilik3253

    @jacoboribilik3253

    Жыл бұрын

    there are other several ways to prove this remarkable fact.

  • @azursmile

    @azursmile

    Жыл бұрын

    @@jacoboribilik3253 yes, Dr Peyam presents 12 of them in his video collection here kzread.info/head/PLJb1qAQIrmmCgLyHWMXGZnioRHLqOk2bW

  • @qm_turtle
    @qm_turtle Жыл бұрын

    It is great seeing this integral done in cartesian coordinates. All the textbooks I used so far either used the approach over polar coordinates or just used the result. Thank you for this video!

  • @davidalexander4505
    @davidalexander4505 Жыл бұрын

    Interestingly, this quite related to polar coordinates but avoids using them :). From the 2D point of view in the first quadrant, we used the coordinates (x,t) where (x,y) = (x,tx). t = y/x is the slope of the line starting from the origin passing through (x,y), in other words t = tan(theta) where theta is polar angle. Cool video :)

  • @blackpenredpen

    @blackpenredpen

    Жыл бұрын

    Thanks!!

  • @shuhulmujoo

    @shuhulmujoo

    6 ай бұрын

    Wow never thought about this, very interesting thanks!

  • @carterwoodson8818
    @carterwoodson8818 Жыл бұрын

    I remember doing this integral shortly after learning about the jacobian. There is so much joy in doing this integral for the first time, thank you Prof. Steve!

  • @wayneqwele8847
    @wayneqwele8847 Жыл бұрын

    As a stats guy, this is a beautiful detour from the more popular solution. I enjoyed the detailed steps and exploits of the symmetry inherent in the integral. Whilst the polar coordinates approach is easier to explain to anyone who has done trig, this solution is elagant af too.

  • @Syntax753
    @Syntax753 Жыл бұрын

    In 1995 the internet arrived. And this channel is the only good thing worth watching (just a long time waiting :)). Love your style and you teach like someone who understands rather than repeats. Thanks for your hard work!

  • @Jack_Callcott_AU
    @Jack_Callcott_AU Жыл бұрын

    This is a great video Steve; I've seen this integral solved before, but only with the usual polar coordinates method. Thanks!

  • @aura-audio
    @aura-audio Жыл бұрын

    As a student who hasn't taken Calc 3 but still uses parts of it, I really appreciate this video and seeing this explanation!

  • @1862anthony
    @1862anthony Жыл бұрын

    i don’t have the slightest idea about a single thing he said.

  • @Dergicetea

    @Dergicetea

    Ай бұрын

    xD

  • @morpheus6408

    @morpheus6408

    12 күн бұрын

    How? It’s simple. You just might have to learn the basics of this topic first to understand deeper things

  • @CalculusIsFun1

    @CalculusIsFun1

    Күн бұрын

    What part didn’t you understand? It’s okay to admit it. We can help you. the integral is of an even function. This means that it’s symmetrical about the y axis. that’s why he rewrote it in the beginning. From there since it’s a definite integral we can swap out variables so long as the final definite value is the same. So that’s where the integral with respect to y of e^-y^2 came from. Then he just squared it which is the same as multiplying the integrals and got it to 4 times double integral from 0 to inf+ of e^-(x^2 + y^2) Then he substituted for T and rewrite the bounds, then factored out the x^2 and flipped the bounds of integration to make it an integral with respect to x. Then he does a U substitution to compute the inner integral. From there the final integral is a basic trig substitution which yields 2tan^-1(t) from 0 to inf = 2(pi/2) = pi And since this result is the square of the original integral we need to take the square root to get our final answer of root(pi).

  • @johnanderson4638
    @johnanderson4638 Жыл бұрын

    Nice route to solving a tricky integral. Great videos ... keep it up!

  • @maximegr3992
    @maximegr3992 Жыл бұрын

    I have always loved your enthusiasm !! Also, nice way to solve the integral

  • @ericguillet8986
    @ericguillet8986 Жыл бұрын

    Franchement très intéressant. Je ne connaissait que la méthode avec passage en polaire. Et j'étais persuadé que c'était la seule méthode possible ! Merci pour cette brillante présentation.

  • @jul8803
    @jul8803 Жыл бұрын

    The beauty of the mathematics lies not in the destination but in the elegance of the paths. Thanks for illustrating it.

  • @andresmillanmillan5155
    @andresmillanmillan5155 Жыл бұрын

    I didnt know this approach. Thank you for the very clear and instructive presentation.

  • @jatag100
    @jatag100 Жыл бұрын

    Thanks for your videos! It's fun to watch your process!

  • @ysfhanikai995
    @ysfhanikai9959 ай бұрын

    How beautiful the result and the way to solve it , thanks

  • @fooddrive8181
    @fooddrive8181 Жыл бұрын

    I had this on my calc 2 exam!! I approximated it using the mclaurin series for e to the x and then integrating that summation!! Cool video

  • @MohammadIbrahim-sq1xn

    @MohammadIbrahim-sq1xn

    Жыл бұрын

    I am getting 2 Σ(-x)^(2n+1)/((2n+1)(n!)) [0, inf] isn't this diverging? I know I have done a mistake somewhere but I am not able to spot it

  • @fooddrive8181

    @fooddrive8181

    Жыл бұрын

    @@MohammadIbrahim-sq1xn i shouldve clarified but my integral was from 0 to x and the intial variable was t. Once you integrate the series you get Σ(-1)^n * x^(2n+1)/((2n+1)(n!)) which is the expansion of sin(x), cheers.

  • @MohammadIbrahim-sq1xn

    @MohammadIbrahim-sq1xn

    Жыл бұрын

    @@fooddrive8181 I have a doubt where did you get the (-1)^n from (this might be very silly but I can't seem to figure it out)

  • @fooddrive8181

    @fooddrive8181

    Жыл бұрын

    @@MohammadIbrahim-sq1xn the (-x^2) is (-1) (x^2) so in my expansion i applied the n to both from (a^m)^n = a^(m*n)

  • @ginglebaws

    @ginglebaws

    Жыл бұрын

    I watched 10 minutes of this stuff and we went from a simple formula to a bunch of mumbo jumbo. Can one of you calculus students explain to me what in the world this stuff is useful for? And be specific and have you found a job to where you are actually crunching out formulas to prove they are right or wrong for a living. Can't use teacher or professor either. Some other profession please.

  • @aninob
    @aninob Жыл бұрын

    Beautiful :) I did'nt know this trick. BTW when you switch to double integral and polar coordinates, you don't need Jacobian. You just can calculate the volume under the function as sum of volumes of cylinder shells. (Height of shell is e^(-x^2-y^2) = e^-r^2; length is 2 pi r and thickness is dr, so you integrate e^-r^2 . 2 pi r . dr from 0 to infinity.)

  • @MrPoornakumar

    @MrPoornakumar

    Жыл бұрын

    aninob Yes. That is more elegant.

  • @lawrencejelsma8118

    @lawrencejelsma8118

    Жыл бұрын

    Plus I don't you understand his y = xt where his translation derivatives doesn't equal in dy where dy = x dt + a missing in his formulas t dx term: dy = x dt + t dx I thought? 🤔

  • @aninob

    @aninob

    Жыл бұрын

    @@lawrencejelsma8118 In the substitution y = xt in the inner intergral is x in the role of constant. (Like "for given fixed x from the outer integral we shall calculate this inner integral..."). So the substitution y = xt is just recepee for transition from y to t. This is the reason why dy = x.dt.

  • @lawrencejelsma8118

    @lawrencejelsma8118

    Жыл бұрын

    @@aninob ... Yeah your correct. He should have written it out dy = xdt + tdx but the tdx term equals zero just like t can translate through the integral during summation. I was just use to "two space" partial differentiation mathematics of ut (ut)' = (u')t + u(t'). The recommended solution of real only or even when considering imaginary numbers are always polar solutions of rcosx + jrsinx solutions because trigonometric integral tables solutions are easier to understand.

  • @aninob

    @aninob

    Жыл бұрын

    @@MrPoornakumar 3B1B just made a beautiful video about it (plus some mathematical sugar on the top I never knew about). kzread.info/dash/bejne/la1s1JmQg9i6Yaw.html

  • @rotemlv
    @rotemlv Жыл бұрын

    Nice to see a different way, I really liked the polar method when it was explained in multivariable calc. I also liked the way the Fourier transformation is used to find the improper integral of sin(x)/x. Could be nice to see an alternative way to do that one.

  • @9146rsn
    @9146rsn Жыл бұрын

    Love the aspect of switching the order of integration, I was wondering how it could be done. But then realised that it is ofcourse summation of product. At the start was confused as to how you could make the function 2* (0 to Infinity) of the f(x), but i had missed that this is a converging function. made math interesting again.. Thanks!

  • @davidbrisbane7206
    @davidbrisbane7206 Жыл бұрын

    No polar? Something against polar?

  • @ChollieD

    @ChollieD

    Жыл бұрын

    Glad I finally found someone doing this without going to polar coordinates.

  • @chitlitlah

    @chitlitlah

    Жыл бұрын

    Polar killed my father.

  • @davidbrisbane7206

    @davidbrisbane7206

    Жыл бұрын

    @@chitlitlah Noooo!!!

  • @lexyeevee

    @lexyeevee

    Жыл бұрын

    change of variables would be calculus 3 ;)

  • @imnimbusy2885

    @imnimbusy2885

    Жыл бұрын

    Too COLD!

  • @OdedSpectralDrori
    @OdedSpectralDrori Жыл бұрын

    Simple and brilliant, never occurred to me!

  • @saggycoconuts6104
    @saggycoconuts6104 Жыл бұрын

    Thank you so much. This is the best explanation of this ive ever seen

  • @Grisostomo06
    @Grisostomo06 Жыл бұрын

    Well done. You made this very easy to follow. Thanks.

  • @YoutubeUser-yl9ys
    @YoutubeUser-yl9ysАй бұрын

    Thank you,I’ve been thinking about a method to do it without polar coordinates cuz I didn’t learn them,great job ❤

  • @darinhitchings7104
    @darinhitchings7104 Жыл бұрын

    Quite impressive in terms of your presentation, well done

  • @BulaienHate
    @BulaienHate Жыл бұрын

    This is a cool integral to know in that you can use integrals used by probability distributions to simply rewrite the integral in terms of it's probability distribution and then if they go from -inf to +inf they just become 1

  • @ruchikarfacts7380

    @ruchikarfacts7380

    Жыл бұрын

    Can you solve this problem? Q. If f[{x + √(1 + x^2)}/x] = x^2. Then find f(x); domain & Range of f(x) =? Video link:- kzread.info/dash/bejne/i4qW0aSNnNC7n5s.html

  • @YassFuentes
    @YassFuentes Жыл бұрын

    Beautiful problem, balckpen! Thank you for sharing :)

  • @acdude5266
    @acdude52664 ай бұрын

    Great job! Good pace and explanation, an alternative to polar conversion method. Thank You!

  • @redvine1105
    @redvine1105 Жыл бұрын

    3:15 I was like “yeah I get it” 💪

  • @prollysine
    @prollysine Жыл бұрын

    Hi bprp, thank you for the comprehensible and clear derivation, I am now practicing Laplace calculus.

  • @chrisrybak4961
    @chrisrybak4961 Жыл бұрын

    Lovely integral! Thank you.

  • @davidm9442
    @davidm9442 Жыл бұрын

    This has to be one of the most beautiful integrals out there

  • @CM63_France
    @CM63_France Жыл бұрын

    Hi, I worked on this for years when I was young, until I found the polar solution in a book. But I'm glad to see that there is a method that avoids polar coordinates. Thanks a lot for this 👍

  • @nilsmarione4768
    @nilsmarione4768 Жыл бұрын

    I would love to see you use the Feynman trick with some rigorous explanations (uniform convergence) for the swap between the derivative and the integral! Keep up the good work 😉

  • @giovanni1946

    @giovanni1946

    Жыл бұрын

    The Feynman trick has nothing to do with uniform convergence though, you prove it using the dominated convergence theorem - it essentially requires to dominate the integral of the partial derivative

  • @fatitankeris6327
    @fatitankeris6327 Жыл бұрын

    This integral is great. It's amazing how there are several connections between the Exponential function and pi, complex numbers and this at least.

  • @starpawsy

    @starpawsy

    Жыл бұрын

    I'm of the whacky opinion that complex numbers hide (or reveal) a door into other universe, Or universes. No evidence. Just a "gut feel".

  • @amineaboutalib

    @amineaboutalib

    Жыл бұрын

    @@starpawsy that doesn't mean anything

  • @starpawsy

    @starpawsy

    Жыл бұрын

    @@amineaboutalib Nope. Not a thing.

  • @holliswilliams8426

    @holliswilliams8426

    Жыл бұрын

    @@starpawsy Holy crankometer Batman, it's a kook!

  • @starpawsy

    @starpawsy

    Жыл бұрын

    @@holliswilliams8426 Oh look, I fully recognize the wackiness. That's ok. Im old enough not to care.

  • @muhammadamr5073
    @muhammadamr5073 Жыл бұрын

    Masterpiece . Thanks a lot for your great efforts ,Sir. 💖💖💖

  • @hexcadecimaldhcp1105
    @hexcadecimaldhcp11058 ай бұрын

    Because of this video, now I understand how upper and lower bounds of integral change due to it's variable change. Thank you so much⭐

  • @rafibot4276
    @rafibot4276 Жыл бұрын

    13:31 "And there's no +c" CRIES OUTTA HAPPINESS

  • @pedrodeoliveiracamargo2413
    @pedrodeoliveiracamargo2413 Жыл бұрын

    this is just realy original, congratulations!

  • @boldizsarszabo883
    @boldizsarszabo883 Жыл бұрын

    Wow! Thank you so much for your videos!

  • @anastasiosefthimiadis6831
    @anastasiosefthimiadis6831 Жыл бұрын

    I have seen over 10 different proofs of this result, I don't think I have seen that one before. Great job!

  • @blackpenredpen

    @blackpenredpen

    Жыл бұрын

    Thank you! Cheers!

  • @ffggddss

    @ffggddss

    Жыл бұрын

    Hey, then you'll now have to make a video about the other 9 methods, to let the rest of us in on them! ;-) Fred

  • @sahibpreetkaur7917
    @sahibpreetkaur79178 ай бұрын

    Oh my god you are so amazing. I just loved it. The way you make it so easy for us is commendable. You are incomparable. Thank u so much. Because of you I am able to solve it without remembering polar coordinates typical method.

  • @FX9426
    @FX9426 Жыл бұрын

    It is so satisfying to watch you explain the math. (The first thing that catch my eye is the 荼果 doll under the e)

  • @kono152
    @kono152 Жыл бұрын

    I love this integral and i never saw this approach

  • @AJ-et3vf
    @AJ-et3vf Жыл бұрын

    Awesome video! Thank you!

  • @vinayakrao6687
    @vinayakrao6687 Жыл бұрын

    amazing sir👍today I had learnt little something,... and understood that, there is a lots of yet to learn ...

  • @chungus816
    @chungus816 Жыл бұрын

    Very cool to see someone so passionate about a topic that so many people wrongly think of as boring

  • @qazar7906
    @qazar79063 ай бұрын

    OMGGGGGG Thanks you so much, i dont have words 😍😍😍

  • @joshuawalsh6968
    @joshuawalsh696810 ай бұрын

    Very nice , I knew of the Feynman technique , but this is very nice

  • @dr.rahulgupta7573
    @dr.rahulgupta7573 Жыл бұрын

    Excellent presentation 👌

  • @abe1433
    @abe1433 Жыл бұрын

    Nicely done! 🙂

  • @ignantxxxninja
    @ignantxxxninja3 ай бұрын

    I enjoyed watching this. I've taken a few courses in stats and probability, and none of the professors wanted to take the time to show this integral. We just accept it as fact.

  • @igorjasenovski4313
    @igorjasenovski43138 ай бұрын

    beautiful job!!!

  • @jimgolab536
    @jimgolab536 Жыл бұрын

    That was really nice!

  • @calcdawg655
    @calcdawg655 Жыл бұрын

    Nice explanation!

  • @MadhukarMoogala
    @MadhukarMoogala Жыл бұрын

    The way he swicthes pens is no less than a magician.

  • @aminebenmessauod5228
    @aminebenmessauod5228 Жыл бұрын

    Thank you so much You are the greatest teacher in the world🤩🤩🤩

  • @dottemar6597
    @dottemar6597 Жыл бұрын

    Never mentioned Laplace. Would be interesting to hear just a little about when and how these guys came up with these things. We kinda owe them.

  • @pratyushdahal3667
    @pratyushdahal3667 Жыл бұрын

    I dont understand calculus one bit, but something about your explanation style just drives me towards your videos

  • @egohicsum
    @egohicsum Жыл бұрын

    thank you that was very amazing

  • @Frogieder
    @Frogieder Жыл бұрын

    I feel great, even though I have studied calculus only on my own, not in school yet, I was able to follow along with what's happening. And oh boi, it was beautiful

  • @aurelian3268
    @aurelian3268 Жыл бұрын

    how good are your tutorials? I passed a calculus 2 course with 70% with little to no help from my professor. keep up the great work man!

  • @chandrashekharbagul5825
    @chandrashekharbagul5825 Жыл бұрын

    Thank you very much... Love your videos...

  • @lancecruwys2177
    @lancecruwys2177 Жыл бұрын

    Wow! This is so good!!

  • @boredgamesph4872
    @boredgamesph4872 Жыл бұрын

    I really doubt polar coordinates since I don't know how it works. With this method, I believe now that the integral of e^-x^2 from -inf to inf is equal to sqrt of pi. Amazing.

  • @pseudolullus

    @pseudolullus

    Жыл бұрын

    You can imagine the coordinate and variable switch in the polar coordinate trick as allowing one to sweep from 0 to infinity in a circular way all at once (radially with r from 0 to infinity and circularly with theta from 0 to 2pi). Since the function is actually radially symmetrical from the origin and there is only an infinity (imagine it in 3D), with polar coordinates you do not need to split it up in two (-+inf,0] halves.

  • @carultch

    @carultch

    8 ай бұрын

    Start with the original integral: Integral e^(-x^2) dx Square it: (Integral e^(-x^2) dx)^2 = double integral e^(-x^2) * e^(-x^2) dx dx Change one of our variables of integration to y: double integral e^(-x^2) * e^(-y^2) dx dy Using properties of exponents, the product of the two exponential functions becomes e^(-x^2 - y^2): double integral e^(-x^2 - y^2) dx dy In polar coordinates, r^2 = x^2 + y^2.. The differential area dx*dy is equivalent to r dr dtheta. Thus: double integral e^(-r^2) r dr dtheta The limits on this integral are the full domain of x and y. In polar coordinates, it is 0 to infinity for r, and 0 to 2*pi for theta. This generates the derivative of the inside function, so we can use u-substitution. Work with the inner integral first, and theta isn't involved. integral r*e^(-r^2) dr Let u = -r^2. Thus du = -2*r dr, and dr = du/(-2), and the integral becomes: -1/2*integral e^u du, which evaluates to -1/2*e^u + C. In the r-world, it becomes: -1/2*e^(-r^2) + C We'd like to evaluate this from r=0 to r=infinity: (-1/2*e^(-inf^2)) - (-1/2*e^0) = 1/2 The outer integral is trivial, it's just integral 1 dtheta, which is theta + C. Evaluate from 0 to 2*pi, which is 2*pi. Multiply with the r-integral result, which gives us the result: [integral e^(-x^2) dx from 0 to infinity]^2 = pi Since we originally squared the integral, take the square root to get the original integral we want: integral e^(-x^2) dx from 0 to infinity= sqrt(pi)

  • @togrulahmadov3393
    @togrulahmadov3393 Жыл бұрын

    Very nice solution dear teacher. 👍👍👍👍👍👍👍

  • @mehrdadmatinfar5470
    @mehrdadmatinfar54707 ай бұрын

    You could also try x=rcosa and y=rsina for solving double integral

  • @luigibeccali2840
    @luigibeccali2840 Жыл бұрын

    when you define y=xt therefore t=y/x, how can you say that 1+t^2 is constant in the x world? t=y/x so it varies with x, it doesn't seem constant to me. What am I getting wrong? thank you!

  • @abddibani

    @abddibani

    9 ай бұрын

    √(1+t) the correct translation

  • @abddibani

    @abddibani

    9 ай бұрын

    When you change the variable X to U

  • @loweffortdev

    @loweffortdev

    8 ай бұрын

    Yes, can someone please explain the process

  • @guguig9746
    @guguig9746 Жыл бұрын

    I remember learning to do this one!

  • @jannegrey593
    @jannegrey593 Жыл бұрын

    This was quite easy to follow - which is weird, I'm very bad at integrals. Honestly the only point I tripped up was in the end where 2*int[0,inf] (1/1+t^2) * dt became 2*tan^-1 (t) [0,inf]. But that is probably because I don't remember formulas for anti-derivative of 1/(1+x^2) and didn't know derivative of tan^-1 (x). My big fail in trigonometry is remembering all the formulas that can be used. I only remember that sin^2+cos^2 = 1. Very entertaining and informative video - thanks!

  • @TA16888
    @TA16888 Жыл бұрын

    #blackpenredpen I was wondering how you come up with the idea y=xt and why it works? thanks in advance.

  • @ttiff97
    @ttiff97 Жыл бұрын

    I remember solving the indefinite integral version in my calc 2 class by using the Taylor series expansion of e^x

  • @alessandrocostantini4280
    @alessandrocostantini42807 ай бұрын

    It would be nice to have a video where you solve this integral using complex analysis (residue theorem). It's a bit longer but it is a very fun calculation.

  • @gal-zki
    @gal-zki Жыл бұрын

    I am so happy to live in a world where bprp exists! greetings from Brazil!!

  • @blackpenredpen

    @blackpenredpen

    Жыл бұрын

    Thank you

  • @muhammedfuadpt5137
    @muhammedfuadpt5137 Жыл бұрын

    Waiting for 100 integral part 2 😌

  • @francoocampo5286
    @francoocampo5286 Жыл бұрын

    I´m calculus 2 student from Argentina and I understand it so well, I´ll believe in Chen Lu

  • @arkadipray1210
    @arkadipray1210 Жыл бұрын

    Thank you so much sir

  • @TomJones-tx7pb
    @TomJones-tx7pb Жыл бұрын

    If you substitute t= y/x then you have substituted the tan of the angle for polar coordinates. Also the substitution for u is minus the square of the radius in polar coordinates. So you have used polar coordinates, it is just disguised.

  • @kushagramishra1729
    @kushagramishra1729 Жыл бұрын

    Dhanyawad bhaiyaa 🙏🏻🙏🏻. Love from BHARAT 🇮🇳

  • @PiggyPigCute
    @PiggyPigCute7 ай бұрын

    Awesome resolution ❤

  • @benjamingross3384
    @benjamingross3384 Жыл бұрын

    It's cute, but you cant hide from the trig on this one. You end up with the arctan anyway. Thats kinda obvious because the answer has pi in it, but still fun to watch you sweep it under the rug for as long as possible. I like different approaches, but I still like the move to polar better at the end of the day.

  • @fantiscious
    @fantiscious Жыл бұрын

    BPRP, can you integrate √(x+√x) with respect to x? Yes, there is an elementary answer :D

  • @pemfiri
    @pemfiri Жыл бұрын

    y = xt , when y goes to 0, the value of t does not have to be always 0. because in y = xt , the value of y also depends on x. in the integral we can see that x varies from 0 to infiniti. For example if x = 0, then t can have many values while xt remains 0. Can you explain why we assume when y = 0 that t = 0.

  • @marshallsweatherhiking1820

    @marshallsweatherhiking1820

    Жыл бұрын

    The value at some isolated point never effects the integral as a whole. The substitution is okay if still have convergence approaching zero. Polar coordinates has the same problem as theta can be anything at the origin.

  • @peterstevens3395
    @peterstevens3395 Жыл бұрын

    Very clever, I love it! I have a little problem with it though. I could be wrong, but it seems to have a dimensional mismatch between the two sides of the equation. The left-hand side, I, represents an area under the curve, which is 2-d, a number to the power of 2. The right-hand side is the square root of a double integral, which represents a volume-a number to the third power. Taking the sqr. root of that number produces a power of 3/2, which is not 2. Am I seeing it wrong?

  • @duurc

    @duurc

    Жыл бұрын

    Your definition of dimension is bizzare and certainly doesn't apply to integrals that flexibly. How many dimenisons cylinder have, knowing that it's integral is defined by DOUBLE integral in 2D polar coordinates multiplied basically by a constant? How many dimensions integral of sphere has, knowing that it's integral is TRIPLE integral? Inconsistent.

  • @duurc

    @duurc

    Жыл бұрын

    Also double integral came not from a 'natural observation' of a geometrical object, but was a product of multiplication of two usual integrals, which would rather double the 'dimensionality' of I becoming I^2 rather than adding 1 to it

  • @lih3391

    @lih3391

    Жыл бұрын

    Nothing says the dimensions have to match up, I think it was the squaring of an area and then labeling that extra area with a new variable that caused your confusion

  • @xinpingdonohoe3978

    @xinpingdonohoe3978

    Жыл бұрын

    ∫ydx=∫∫dydx What changed, really?

  • @IamBATMAN13
    @IamBATMAN13 Жыл бұрын

    Yayy, part 2. Let's goooo

  • @AbouTaim-Lille
    @AbouTaim-Lille Жыл бұрын

    Apart from this awesome video supplied by ur easy explanation . Actually, Like the Gamma function, since there is no explicit integral to f(X) = e^-x² , another special function can easily be defined to be the distribution function F(X) = the integral of f(X) between -∞ and x. Obviously it is positive , strictly increasing and limited. and actually , since ex is equal to the Taylor series that has the terms 1/n! .X^n . Then e^-x² is equal has the Taylor series with terms : 1/n! . (-x²)^n . Thus F(X) can easily be obtained by integrating of that series. I think This can be helpful in numerical analysis as the you can have an approximation to F(X) by studying a polynomial of sufficiently large degree and dropping the rest of the power series.

  • @Maths_3.1415
    @Maths_3.1415 Жыл бұрын

    I love calculus Nice video:)

  • @Johnny-tw5pr
    @Johnny-tw5pr Жыл бұрын

    this method is so much nicer than using polar coordinates and the equation which has a difficult to understand derivative

  • @georgesquenot1404
    @georgesquenot1404 Жыл бұрын

    Excellent! It is fun even if (or maybe because) it is more complicated than going through polar coordinates. I watched it because I was curious to see how the π number would appear without that. I remember it was a wonder to me when I found out that trigonometric functions can be built by just integrating functions defined using only the 4 basic arithmetic operations plus the square root, the latter not even always necessary, like here. More generally, it is fascinating how π can materialize where it is not expected, like for instance in the sum of reciprocal squares.

  • @zannyrt
    @zannyrt Жыл бұрын

    I’m a masters in ML but I love math and calculus, love these videos❤

  • @paigeturnah927

    @paigeturnah927

    Жыл бұрын

    さとみくんの「まず」って言い方好きなの分かりますか?!🥺 youtubemn.com/watch?v=zZt0708hbPO お母さんに言われた時は天国へのカウントダウンしよっかなって思っちゃったけど

  • @janami-dharmam

    @janami-dharmam

    Жыл бұрын

    nice, but what is ML??

  • @zannyrt

    @zannyrt

    Жыл бұрын

    @@janami-dharmam Machine Learning

  • @janami-dharmam

    @janami-dharmam

    Жыл бұрын

    @@zannyrt I see; these are rather infant sciences. Math is well established.

  • @mazenzidieh
    @mazenzidieh11 ай бұрын

    Nice, thanks a lot

  • @user-mp7ho4qk5u
    @user-mp7ho4qk5u9 ай бұрын

    You are outstanding!

  • @alexprince7343
    @alexprince7343 Жыл бұрын

    how are you able to treat the "t" as constant in the first integral when it depends on x and the integral is with respect to x?

  • @sdquinlan
    @sdquinlan Жыл бұрын

    Question: If you are defining t=y/x, then x cannot be equal to zero. But you are letting that x be the same as the x in the other integral which is requires x=0 on the integral limits. How is this reconciled?

  • @marshallsweatherhiking1820

    @marshallsweatherhiking1820

    Жыл бұрын

    Yea. I think the function can be broken up when there are only a finite number of discontinuities and you can prove the absolute value after substitution still converges approaching the now asymptomatic discontinuity. It’s probably one of those theorems you prove using real analysis techniques. Not that I remember much of that.

  • @Inglesemente
    @Inglesemente11 ай бұрын

    You are better than 99% of calc teachers!