9. Understanding Experimental Data

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
View the complete course: ocw.mit.edu/6-0002F16
Instructor: Eric Grimson
Prof. Grimson talks about how to model experimental data in a way that gives a sense of the underlying mechanism and to predict behavior in new settings.
License: Creative Commons BY-NC-SA
More information at ocw.mit.edu/terms
More courses at ocw.mit.edu

Пікірлер: 26

  • @mikets42
    @mikets42 Жыл бұрын

    ""regression" does not relate to error minimization. The term "regression" appeared first in the article describing statistics of people's height through generations. If a father was tall, his son would be likely taller than average, but ... less so because it is a "regression to the mean". See The Art of Statistics: Learning from Data by David Spiegelhalter for more details.

  • @haneulkim4902
    @haneulkim49023 жыл бұрын

    Fun, on point, and in-depth lecture. Thanks you MIT.

  • @nealyee6160
    @nealyee61606 жыл бұрын

    These jokes are so cool that I would hang out with them for sure

  • @shobhamourya8396
    @shobhamourya83965 жыл бұрын

    @44:44 Best ever explanation of coefficient of determination R and variability R^2

  • @leixun
    @leixun3 жыл бұрын

    *My takeaways:* 1. An example: spring model 3:43 2. Coefficient of determination 38:03

  • @ParisienDBS
    @ParisienDBS7 жыл бұрын

    Out of curiosity, at 19:01, what would trying to minimize the area of the triangle result in? as opposed to minimizing the distance y?

  • @mtp1376

    @mtp1376

    5 жыл бұрын

    Since it contains an X difference, I think that the result would not have something significant.

  • @rsd2dcc

    @rsd2dcc

    5 жыл бұрын

    Nothing to do with the area of triangle. Trying to to find best line which stands at a minimum distance from observed value. So that means, you are trying to minimize the y value in the picture.

  • @binaria010
    @binaria0104 жыл бұрын

    Great lecture!

  • @cjlion7081
    @cjlion70814 жыл бұрын

    would have been nice to see the slides

  • @tobalaba

    @tobalaba

    4 жыл бұрын

    Here: ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0002-introduction-to-computational-thinking-and-data-science-fall-2016/lecture-slides-and-files/MIT6_0002F16_lec9.pdf

  • @kamellogb
    @kamellogb6 жыл бұрын

    cracked up with those jokes

  • @o3bvv
    @o3bvv3 жыл бұрын

    Trivia: while dealing with real data, one might not want R2 to get close to 1, as that might indicate overfitting, which is really not good, especially for prediction models, which is nicely illustrated by the case of 16-degree polynomial

  • @frankieboyseje

    @frankieboyseje

    Жыл бұрын

    anything over a 5-degree polynomial is extremely rare in mathematics rather do a non parametric / non linear fit

  • @haneulkim4902
    @haneulkim49023 жыл бұрын

    @18:37 is he refering to line P?

  • @quocvu9847
    @quocvu98478 ай бұрын

    38:28

  • @Zinzin09
    @Zinzin097 жыл бұрын

    Love the jokes!

  • @xianhaozhu5315
    @xianhaozhu53154 жыл бұрын

    Not sure if R^2 is always positive.

  • @nbgarrett88

    @nbgarrett88

    4 жыл бұрын

    R square is the percentage of explained variance/total variance. It falls between 0 and 1 accordingly. It records the amount of variance (error) explained by the model.

  • @fredfeng1518

    @fredfeng1518

    4 жыл бұрын

    By definition (R2=1-RSS/TSS), the R2 will be negative when the model is worse than a "mean model" (y_hat = y_bar). In general, a model can be arbitrarily bad (RSS >> TSS), so R2 can certainly be negative.

  • @nbgarrett88

    @nbgarrett88

    4 жыл бұрын

    Thank you @@fredfeng1518. I have looking into this more to better understand. Rhetorically, why are we being taught the range is 0-1? Is it just more practical? Admittedly, I am new to the field and only have a grasp of the basic concepts, but I can find many resources that I would find credible that state R^2 it is definitively 0-1. "It's a proportion." "It's a squared term.", etc. Is this contentious? Are negative r^2 more theoretical and so rare they aren't worth discussing? Anyways, thank you for elucidating the point and setting me straight. I will try to understand this better.

  • @fredfeng1518

    @fredfeng1518

    4 жыл бұрын

    @@nbgarrett88 No problem. This is indeed more on the theoretical side. In practice, any useful model would have a positive R2, because if it performs even worse than the mean model (in which case RSS > TSS, and thus a negative R2), we could simply pick the mean model instead, which is always at our disposal.

  • @danielstankiewicz3747
    @danielstankiewicz37473 жыл бұрын

    ROFL because of the spring joke!

  • @programmer1010
    @programmer1010 Жыл бұрын

    32:28