Zermelo Fraenkel Infinity

This is part of a series of lectures on the Zermelo-Fraenkel axioms for set theory.
We discuss the axiom of infinity, and give some examples of models where it does not hold.
For the other lectures in the course see • Zermelo Fraenkel axioms

Пікірлер: 24

  • @kingarth0r
    @kingarth0r2 жыл бұрын

    Do you think you'll do a video on large cardinal axioms?

  • @1337w0n
    @1337w0n10 ай бұрын

    When I was in my logic class I had to ask the question "What if the universe is empty?" The teacher grinned and said "We're assuming that it's not." When I simply nodded, satisfied with the answer, my classmates stared at me like I had just grown a second head. At this point, the teacher explained that this was actually a reasonable question.

  • @TheMandomaniac
    @TheMandomaniac Жыл бұрын

    Thank you for making this video!

  • @annaclarafenyo8185
    @annaclarafenyo81852 жыл бұрын

    Infinity must be considered stronger than powerset in consistency power, as powerset is just an "inaccessible cardinal" axiom relative to infinity, which adds proof strength, to be sure, but it adds strength in a sort of minimal reflective way. Infinity adds an unfathomable amount of strength, without powerset, assuming some other way of defining functions, the strength of set theory with infinity should be equivalent to that of second order arithmetic, and the question is then whether the step from first order to second order arithmetic is smaller or larger than the step from second order arithmetic to ZFC. I believe the second step is tiny in comparison to the first, because inside a countable model, it is just an ordinally iterated consistency axiom, like an inaccessible axiom, and these are much weaker than true large strength axioms like measurable cardinals.

  • @An-ht8so

    @An-ht8so

    2 жыл бұрын

    What do you have in mind for "some other way of defining functions" ? You would need another axiom to take its place.

  • @An-ht8so

    @An-ht8so

    2 жыл бұрын

    And by the way ZFC does have countable models, but I see what you mean (I think)

  • @tomholroyd7519
    @tomholroyd75192 жыл бұрын

    Student: "Master, what is the difference between finite and infinite?" Master: "You don't get it." At that moment, the Student was enlightened.

  • @kazikmajster5650

    @kazikmajster5650

    9 ай бұрын

    I apparently have not been enlightened.

  • @kazikmajster5650
    @kazikmajster56509 ай бұрын

    Axiom of Infinity - "There exists an infinite set." Well, the langauge of Set Theory does not include the word "infinite". So we might say, the "set of all Naturals". What are Naturals? 0=∅, 1={0}, 2={0,1} n={0,1,2...n-1} "next" is the union of all previous Naturals. Now we can make the set such that it: 1.Contains 0. 2.If it contains n, it also contains the next Natural. Borcherds says all ordinals can even be defined this way. 2:45 "Is the Infinity Axiom needed?" Yes. To get Vω, you must take the Union of {V0, V1, V2...} and you can get this set by applying Replacement to an infinite set, but you first need an infinite set. 4:00 What if you replace the axiom of Infinity with an axiom saying there is no infinity? You get the models: 1.Just ∅. It satisfies all ZFC-I. 2.Hereditarily finite sets. (Finite, rooted, rigid trees.) 12:15 ZFC-Infinity + ~Infinity ↔ Peano Arithmetic, because you can encode PA in ZFC-I+~I, and you can encode ZFC-I+~I in PA. 12:45 ZFC→Con(ZFC-Infinity), so ZFC-Infinity is strictly weaker than ZFC. (It cannot prove some statements that ZFC can.) And Borcherds yet again gave no proof of it. 13:30 A third model of ZFC-I+~I, is a nonstandard (whatever that means) one: Create constants c0, c1, c2... for integers such that c0 = c1 + 1, c1 = c2 + 1... Now Borcherds says this theory is Consistent because it is finite, BUT, it is equivalent to PA, and Gödel works for PA!! It cannot prove its Consistency!!! This model of ZFC-I+~I contains these objects c0, c1, c2 etc. which I would call not-well-founded, because c0 will still be positive after subtracting 1 from it any number of times. A nonwell-founded model. c0 seems to be an infinite set. I do not see why, but Borcherds says c0 is internally finite, and only externally infinite. From inside the model, c0 supposedly appears finite. One quantifier of infinity is that an infinite set can be matched 1-1 (mapped) with its proper (smaller) subset. And such a mapping function, according to Borcherds, is not within the model. "As usual with nonstandard models, very strange freaky things happen." -_-

  • @alan2here
    @alan2here2 жыл бұрын

    I'm happy with the empty set, because if you can select things or not, such as for the set of all even integers then 2 in the set but 3 is not, then the answer to "is it in set X" can be "no" for everything. But then also to have to qualify vacuous truths with something to make it explicit that they are vacuous. To say "It technically works and is true but not in a way that can be built on or used for anything".

  • @PaPa-kr5yt
    @PaPa-kr5yt2 жыл бұрын

    Is the collection of finite rigid trees actually V_w?

  • @jimadams8385
    @jimadams83852 жыл бұрын

    Two new solutions for the quadratic. (1) let x = y + iz. (y + iz) ^ 2 = y ^ 2 + 2iyz + z ^2. Let x ^ 2 + bx + c = 0. y ^ 2 + 2iyz + z ^ 2 + by + biz + c = 0. Equating real and imaginary parts y ^2 + z ^ 2 + by + c = 0. i(2y + b)z = 0. (2) A square is (x + A) ^ 2 = 0, but not all quadratic are squares and cannot be transformed to them. So let (x + A) ^ 2 = h, and equate to x ^ 2 + bx + c = 0.

  • @jeffreyanderson1249
    @jeffreyanderson1249Ай бұрын

    Two to the zeroth power is one.

  • @buddhabuck
    @buddhabuck2 жыл бұрын

    The video says a set in ZFC can be represented by a finite rooted rigid tree, and vice versa. I understand finite, rooted, and tree in this case, but what does "rigid" mean here?

  • @marcelolynch8943

    @marcelolynch8943

    2 жыл бұрын

    No non-trivial automorphisms, i.e. "all branches are different". Also see the previous video on extensionality for exposition on this

  • @avin9106
    @avin91062 жыл бұрын

    @9:30 looks like a bijection between the natural numbers and their powerset, which would mean they have the same cardinality, which they do not. Why does this not prove that their cardinality is the same? Is it not a bijection?

  • @billh17

    @billh17

    2 жыл бұрын

    The range is only the finite subsets of the natural numbers, not all subsets of the natural numbers.

  • @christophclear1438
    @christophclear14382 жыл бұрын

    I think supercompactness is already stronger than omega.

  • @him21016
    @him210162 жыл бұрын

    Couldn't you drop the axiom, and use the other axioms to construct the naturals anyway? The empty set exists, union exists, powerset exists, choice exists,... doesn't the existence of N follow from the other axioms?

  • @billh17

    @billh17

    2 жыл бұрын

    The existence of N does not follow from the other axioms. Only the finite subsets of N follow from the other axioms (assuming that at least one set exists).

  • @pavlenikacevic4976

    @pavlenikacevic4976

    Жыл бұрын

    you could construct the naturals, but you couldn't claim that the class of all naturals is a set

  • @migarsormrapophis2755
    @migarsormrapophis27552 жыл бұрын

    yeeeeeeeeeeeeeeeee

  • @pedrosuarez544
    @pedrosuarez5442 жыл бұрын

    the problem is that we cannot "count" the number of elements since the cardinal loses the ability to express said quantity in infinite sets. To count the number of elements of an infinite set we should first organize from less to greater infinite infinite sets so that when organizing the set that we want to "count" it is positioned such that, "This infinite set is smaller and larger than the infinite sets absolutely close by the difference of 1 single element"

  • @alan2here
    @alan2here2 жыл бұрын

    It's True or False. It's not True, and also it is False.