Poland Math Olympiad | A Very Nice Geometry Problem

Poland Math Olympiad | A Very Nice Geometry Problem
MY OTHER CHANNELS
••••••••••••••••••••••••••••••••
Calculus Booster : / @calculusbooster
Math Hunter : / @mathshunter
--------------------------------------------------------------------------------
Join the channel to become a member
/ @mathbooster

Пікірлер: 31

  • @user-bk9mn8de5c
    @user-bk9mn8de5cАй бұрын

    1)Pythagoras theorem for PQM: (PM)^2 +(QM)^2 = (PQ)^2 2)Pythagoras theorem for OQM: (OM)^2 +(QM)^2 = (OQ)^2 We do not need to calculate QM value. Instead 1) - 2) (PM)^2 - (OM)^2 = (PQ)^2 - (OQ)^2 (8 - R)^2 - R^2 = (8 + R)^2 - (16 - R)^2 (8 - 2R)8 = -(8 - 2R)28 2R = 8 R = 4

  • @onethreefiveeye
    @onethreefiveeyeАй бұрын

    10 seconds of thinking without thousand equations 😮

  • @richardleveson6467
    @richardleveson6467Ай бұрын

    Nicely done - I always enjoy your constructions but seldom manage to complete them by myself!

  • @piyathilakamuthunayaka7291
    @piyathilakamuthunayaka7291Ай бұрын

    I solved that nice problem. Thanks your channel.

  • @quigonkenny
    @quigonkennyАй бұрын

    As O is the center of a quarter circle and OA and OB are both radii, OA = OB = 16. Let P be the midpoint of OA and Q be the center of the small circle. As OA is the diameter of the semicircle, P is the center of the semicircle, and PA = PO = 8. Let C be the point on OA where QC is parallel to OB, and let D be the point on OB where QD is perpendicular to OB. Draw PQ. As P and Q are the centers of the semicircle and circle respectively, the point of tangency between them will be on PQ, so PQ = 8+R. As Q is the center of the circle, QD = R. As QD and OA are parallel, and PO is the radius of the semicircle, PC = 8-R. Let QC = x. Triangle ∆PCQ: PC² + QC² = PQ² (8-R)² + x² = (8+R)² 64 - 16R + R² + x² = 64 + 16R + R² x² = 32R ---- [1] Let OT be the radius of quarter circle O where OT passes through Q. As O and Q are the centers of the quarter circle and circle respectively, O, Q, and their point of tangency T will be colinear, so QT = R and OQ = 16-R. As QC and OB are parallel, QC = OD = x. Triangle ∆ODQ: QD² + OD² = OQ² R² + x² = (16-R)² R³ + 32R = 256 - 32R + R²

  • @krishnaramachandran7722

    @krishnaramachandran7722

    Ай бұрын

    This is exactly the same method followed in the video!

  • @nunoalexandre6408
    @nunoalexandre6408Ай бұрын

    Love it!!!!!!!!!

  • @gelbkehlchen
    @gelbkehlchenАй бұрын

    Solution: R = radius of the circle you are looking for, r = radius of the quarter circle = 16, M = center of the semicircle, N = center of the small circle, B = lower contact point of the small circle. 2 times Pythagoras: (1) MN² = [(r/2)-R] ²+OB² (2) ON² = R²+OB² (1)-(2) = (3) MN²-ON² = [(r/2)-R] ²-R² ⟹ (3a) (8+R)²-(16-R)² = (8-R)²-R² ⟹ (3b) 64+16R+R²-(256-32R+R²) = 64-16R+R²-R² ⟹ (3c) 64+16R+R²-256+32R-R² = 64-16R |-64+16R+256 ⟹ (3d) 64R = 256 |/64 ⟹ (3e) R = 4

  • @padraiggluck2980
    @padraiggluck2980Ай бұрын

    Thanks!

  • @MathBooster

    @MathBooster

    Ай бұрын

    Thank you for supporting this channel 🙂

  • @skwest
    @skwestАй бұрын

    Late to the party... but... here goes: 1) First off, Labels: Center of semicircle => P. Center of small circle => Q. Intersection of semicircle with small circle => C. Intersection of small circle with quarter circle => D. Intersection of small circle with OB => E. 2) Assign the length 'a' to segment EB, therefore the length of segment OE is (16 - a). 3) Connect points O and D (which length is the radius of the quarter circle, 16), passing through Q (I won't cite the supporting theora on these constructions). Noting that the length of segment OQ is (16 - R)22 4) We now have right △OEQ, with legs OE (16 - a) and EQ (R) and hypotenuse OQ (16 - R). Therefore, by Pythagoras, we have (16 - a)² + R² = (16 - R)². This is Equation #1. 5) Next we want to connect points P and Q (i.e. the centers of the semicircle and small circle) forming segment PQ of length (8 + R). 6) Now we need to project point Q onto segment OA at point S, creating segment SQ, parallel to radius OB. We note that segment SQ is the same length as segment OE, or (16 - a). 7) We now have right △QSP, with legs QS (16 - a) and SP (8 - R) and hypotenuse PQ (8 + R). Therefore, by Pythagoras, we have (16 - a)² + (8 - R)² = (8 + R)². This is Equation #2. 8) So, now we have 2 equations in 2 unknowns: #1 - (16 - a)² + R² = (16 - R)² and #2 - (16 - a)² + (8 - R)² = (8 + R)². Subtracting equation #2 from equation #1 yields equation #3: R² - (8 - R)² = (16 - R)² - (8 + R)² so that the "(16 - a)²" terms drop out. 9) Simplifying equation #3, yields (R = 4), which is our answer. Now to watch the video to see if I got it right. Cheers!

  • @skwest

    @skwest

    Ай бұрын

    Whoo hoo! Got it. Thanks for the challenge.

  • @gn01697933
    @gn0169793320 күн бұрын

    32R + R^2 = (16-R)^2

  • @dlspark7965
    @dlspark796517 күн бұрын

    R = OB/4

  • @sadatsayem3724
    @sadatsayem3724Ай бұрын

    16/2=8/2= 4 where is the problem?

  • @skwest

    @skwest

    Ай бұрын

    Hmm... I think that the "8/2" step requires a little explaining.

  • @user-pb9ez2kh4q
    @user-pb9ez2kh4q12 күн бұрын

    虽然一句也没听懂,但还是看懂了😂

  • @runeaanderaa6840
    @runeaanderaa6840Ай бұрын

    8+r=16-r 2r=8 r=4

  • @frankzhou8617

    @frankzhou8617

    Ай бұрын

    You are creating a new formula but I think it’s works when 16 changed to any number, well done!

  • @duyphongtran8702

    @duyphongtran8702

    Ай бұрын

    R>r

  • @runeaanderaa6840

    @runeaanderaa6840

    Ай бұрын

    @@duyphongtran8702 True

  • @user-sm1zb1pj8i

    @user-sm1zb1pj8i

    29 күн бұрын

    請你證明為什麼

  • @krishnaramachandran7722

    @krishnaramachandran7722

    24 күн бұрын

    This is what you need to prove.

  • @prossvay8744
    @prossvay874425 күн бұрын

    R=4

  • @mathstricknguon2246
    @mathstricknguon224624 күн бұрын

    4

  • @user-hh4yx4sq5o
    @user-hh4yx4sq5o14 күн бұрын

  • @vahityurttas2234
    @vahityurttas2234Ай бұрын

    Ben 15 saniyede çözdüm

  • @himadrikhanra7463
    @himadrikhanra7463Ай бұрын

    8/3...?