Gauss's Divergence Theorem

Ғылым және технология

Gauss's Divergence theorem is one of the most powerful tools in all of mathematical physics. It is the primary building block of how we derive conservation laws from physics and translate them into partial differential equations.
@eigensteve on Twitter
eigensteve.com
databookuw.com
This video was produced at the University of Washington
%%% CHAPTERS %%%
0:00 Introduction & Overview
8:55 Why Gauss's Theorem is True
14:38 Gauss's Theorem for PDEs: Mass Conservation
24:11 Recap

Пікірлер: 156

  • @buttforce4208
    @buttforce42082 жыл бұрын

    This channel has single-handedly rekindled my interest in math. Absolutely love it. Thanks so much for making these videos!

  • @Eigensteve

    @Eigensteve

    2 жыл бұрын

    Awesome, so nice to hear!

  • @theverner
    @theverner2 жыл бұрын

    I am so much amazed how excited you are teaching this theorem. Wished to have teachers like you at uni too.

  • @johnalley8397
    @johnalley83972 жыл бұрын

    Outstanding lecture, professor. Defining first in words, providing an intuition and then releasing the math! Shock and Awe. Anyone can deliver the symbols. Gifted educators deliver intuition and genuine understanding.

  • @Eigensteve

    @Eigensteve

    2 жыл бұрын

    I'm so grateful to hear you like it!!

  • @c.l.6456

    @c.l.6456

    2 жыл бұрын

    @@Eigensteve such a blessing to have your intuitive explanations. Even with the lecture notes from Oxford Uni, the systematic proofs and equations were insufficient for a student to fully appreciate the utility of the material. Every university (even the top ones) shall learn from your pedagogy sir.

  • @francescogiuliano9563
    @francescogiuliano95632 жыл бұрын

    > I see a new video has been posted >> I put "like" >>> I watch the video

  • @AllanMontoyaVillegas

    @AllanMontoyaVillegas

    Ай бұрын

    For the Respect's sake!

  • @joonasmakinen4807
    @joonasmakinen48072 жыл бұрын

    At 20:25 Steve oversimplified by moving the time derivative inside the volume integral just like that. It can only be done if the volume being integrated wont change over time, invalid assumption in fluid dynamics. Taking this into account leads us to another beautiful theorem called Reynolds Transport Theorem (RTT), which interestingly naturally leads to the right-hand-side on Steve’s board (if F is a velocity field).

  • @StratosFair
    @StratosFair2 жыл бұрын

    These lectures are fantastic, thank you for taking the time to produce and share them for free.

  • @Eigensteve

    @Eigensteve

    2 жыл бұрын

    You are so very welcome!

  • @CBMM_
    @CBMM_2 ай бұрын

    I'm so grateful for living at this time, so I can learn this theorem in 25 minutes.

  • @hendriklohad631
    @hendriklohad6316 ай бұрын

    It is thanksgiving eve and I am learning some quality vector calc from these lectures. They are so greatly made!! Every detail is explained and is wrapped so elegantly together. A joy to watch.

  • @biogrisha4433
    @biogrisha4433 Жыл бұрын

    Every math teacher feels it is his duty to say that he is not a fancy artist or so when he draws some kind of diagram

  • @HarrydeBont
    @HarrydeBont2 жыл бұрын

    Watching this video, I remembered being totally fascinated (for the first time in my life) by theoretical electrical theory. Thanks for the passion you bring presenting this math.

  • @fredericoamigo
    @fredericoamigo2 жыл бұрын

    Such a good video! Love your teaching style! Keep up the good work, I’m such a fan of it!

  • @majorfallacy5926
    @majorfallacy59262 жыл бұрын

    just came here to say that while i'm currently not watching most of your videos as you upload them, i'm still very thankful because i'm 99% certain that i'll need them again at some point in the future

  • @pavangaonkardonigadde
    @pavangaonkardonigadde Жыл бұрын

    You have no idea how much gratitude i have towards you... Thank you soo much for uploading this...

  • @bouipozz
    @bouipozz Жыл бұрын

    Thank you so much Dr Brunton for making such high quality content freely available. I have recently left work to return to uni and without this channel I would be seriously underprepared. Your ability to take a difficult subject and make it seem almost like common sense in incredible. I hope that my lecturers will have half of your passion and skill.

  • @yashwanthcalidas6031
    @yashwanthcalidas6031 Жыл бұрын

    Before this I had no idea fluid mechanics can be so intuitive and interesting. Great work sir, Thank you so much for your effort.

  • @user-hw7iy7ls6y
    @user-hw7iy7ls6y3 ай бұрын

    Such great explanations and a highly quality channel. Great for building a strong intuition of concepts rarely explained in a straightforward manner.

  • @c.l.6456
    @c.l.64562 жыл бұрын

    I'm so lucky to have discoverd your channel while self-learning multi-variable calc! Abosolutely recommend to anyone (even non-math majors who hasn't touched calculus in 4 years).

  • @lhliu5264
    @lhliu52642 жыл бұрын

    Very excited to watch every update on this series!

  • @Eigensteve

    @Eigensteve

    2 жыл бұрын

    Awesome, I'm excited too!

  • @silverbullet007
    @silverbullet007 Жыл бұрын

    This is the best explanation of the Gauss's Divergence theorem I have heard till now. ☺ Thanks, Steve.

  • @seekingtruth9304
    @seekingtruth9304 Жыл бұрын

    What a great lecture!! I am truly looking forward to more videos from Professor Brunton.

  • @bendavis2234
    @bendavis2234 Жыл бұрын

    What an outstanding explanation! I'm so surprised that my Calc textbook left out the Mass Continuity Equation when going over the Divergence Theorem. It's really motivating to hear how powerful this equation is in applied math and physics. I love hearing the real-world applications.

  • @longyang8964
    @longyang8964 Жыл бұрын

    The lecture is very well organized and superbly delivered!

  • @ChristAliveForevermore
    @ChristAliveForevermore2 жыл бұрын

    Great explanation! Gauss truly was a super genius for figuring this out.

  • @Martin-iw1ll
    @Martin-iw1ll9 ай бұрын

    Great lecture again, you are treasure for mankind! I find the most interesting with the mass continuity equation is the physical interpretation that we can derive for div (F) by rewriting the continuity equation in terms of material derivatives

  • @INFINITE_VOID_11
    @INFINITE_VOID_118 ай бұрын

    Thank you sir...I needed these explanations!! Respect💯

  • @VladimirDjokic
    @VladimirDjokic Жыл бұрын

    woow!cool explanation ! integral sum of dV finally make sense! Thanks!

  • @chilivaryvishal6037
    @chilivaryvishal60378 ай бұрын

    Great visualized explanation of Gauss's Divergence theorem

  • @curtpiazza1688
    @curtpiazza16882 ай бұрын

    Your lectures are so inspiring! 😊

  • @wp4297
    @wp42972 жыл бұрын

    Great video. Excellent for showing the intuition of the volume built as a union of smaller volumes, for divergence theorem. Just few comments: - Divergence Thm has some assumptions. Broadly speaking, everything inside of the statement of the theorem must be meaningful, as an example if you write a divergence of F, that function F must be regular enough (differentiable) for the divergence to exist; REMEMBER that PDEs of Physics translate into "regular enough local regions" all the general Principles of Physics holding for all the physical systems, differentiable or not; - Mass equation example: > when you put time derivative inside the volume integral, you're doing right only if that volume does not change in time (i.e. you're implicitly considering a fixed control volume, otherwise that manipulation is WRONG). Anyway the conclusion you reach is right, but your derivation only holds for a steady volume for integration. Integral laws and then differential laws can be easily translated from the very statement of the Physical Principles if you firs consider Lagrangian volumes (i.e. those volumes moving with the continuum), and then transformed to fixed control volumes (some math required) > maybe I missed that, but the physical meaning of F is not explicit here. In order to have the right physical dimension, it must have the dimension of a velocity. Indeed, it is the velocity field of the continuum under investigation in most of cases (few times it's a bit more tricky, i.e. in diffusion problems that vector field contains both a local average - averaged on the species velocity, maybe - velocity contribution and a drift velocity, likely due to gradient in the specie concentration, see Fick's law for diffusion). Keep going. I'm very curious how this series evolves.

  • @Eigensteve

    @Eigensteve

    2 жыл бұрын

    Thanks!!

  • @JoaoLima-pq1hm
    @JoaoLima-pq1hm5 ай бұрын

    Beautiful content, professor. Brilliant channel, thank you.

  • @briandwi2504
    @briandwi2504 Жыл бұрын

    That was really interesting. Thanks for such a fascinating lecture.

  • @iniyanmdr5504
    @iniyanmdr5504 Жыл бұрын

    This is a treasure worth 1M views. I learnt this in my college days. Understood 15 years later.

  • @VictorJunyiWang
    @VictorJunyiWang2 жыл бұрын

    非常感谢!这个讲解让人印象深刻,过目难忘!这是我见过的向量微积分原理最好的讲解,再次感谢

  • @mariovrpereira
    @mariovrpereira Жыл бұрын

    Remembering in such a good way...thank you so much

  • @antesikiric3782
    @antesikiric37822 жыл бұрын

    Brilliant explanation , thank you

  • @sansh72
    @sansh72 Жыл бұрын

    really broadened my mind . thanks !

  • @felipedepine
    @felipedepine2 жыл бұрын

    Excellent lecture, thank you for posting!

  • @Eigensteve

    @Eigensteve

    2 жыл бұрын

    You are welcome!

  • @varunahlawat169
    @varunahlawat1695 ай бұрын

    I can't thank you enough, this playlist alone made taking the first step to start serious mathematics and physics for me so damn easy!!

  • @Eigensteve

    @Eigensteve

    5 ай бұрын

    I'm glad to hear it! Thanks for watching :)

  • @bumeegabentharavithana2572
    @bumeegabentharavithana257228 күн бұрын

    wonderful explanation thank you.

  • @bradfoster5643
    @bradfoster5643 Жыл бұрын

    I am sooooooo grateful for this video!!!

  • @marcelb6214
    @marcelb621411 ай бұрын

    Thank you so much! I don't even know what to say. You did an amazing job explaining this!

  • @fernandojimenezmotte2024
    @fernandojimenezmotte20242 жыл бұрын

    Great , very neat, clear and didactical explanation Professor Steve of Gauss´s Divergence Theorem. I really enjoy it !! I am following You on the networks and also in the University of Washigton UW Internet Sites. I am thinking about going back to Graduate School [second round from 58 to 100 !!] and besides the quality of the university I believe the Advisor is crucial. Not only that He has abroad knowledge and background on the subject matters but also his ability to motivate. Your lessons are highly motivational.

  • @murillonetoo
    @murillonetoo2 жыл бұрын

    Great lecture, professor! As always, very enlightening!

  • @Eigensteve

    @Eigensteve

    2 жыл бұрын

    Thank you so much!

  • @electrolove9538

    @electrolove9538

    2 жыл бұрын

    @@Eigensteve I loved 💖💖💖the example of all volume integrals cancelling except the outer skin. Wish I had this visualization in class. I always used Gauss's thm as simply a mathematical tool. 1. What I am wondering is did they call it "divergence" before Gauss's thm? Or when Gauss proved it did they coin the term "divergence". 2. Gauss doesn't get as much recognition in statistics even though it's called a Gaussian distribution. For example, if I Google 'who is the father of statistics' it says Fisher, not Gauss. Why is this? Thank you Steve!

  • @Eigensteve

    @Eigensteve

    2 жыл бұрын

    @@electrolove9538 Thank you -- that is a great question. I don't know the history of this, but I'll look into it!

  • @vladmartian
    @vladmartian2 жыл бұрын

    Can't wait to watch the next one.

  • @theonlinezone6904
    @theonlinezone69045 ай бұрын

    this video is helping me a lot, thanks

  • @DJ-yj1vg
    @DJ-yj1vg11 ай бұрын

    Thats a brilliant intuitive explanation

  • @AudioScript152
    @AudioScript152 Жыл бұрын

    Dr. Brunton, you used "Gauss's Divergence Theorem"(GDT) to derive the conservation of mass(CVM). Could you show how GDT relates to the "Reynolds Transport Theorem"(RTT) & also derive the CVM using RTT? Thank you! Dr. Brunton, for taking the time to teach all of us.

  • @nointerference11
    @nointerference115 ай бұрын

    I like how you write in mirror texts along with teaching.

  • @aaronlopes5256
    @aaronlopes52562 жыл бұрын

    Awesome explanation!🙏

  • @Eigensteve

    @Eigensteve

    2 жыл бұрын

    Thank you -- glad you liked it!!

  • @JohnSmith-qp4bt
    @JohnSmith-qp4bt2 жыл бұрын

    Makes a complicated subject clear and attractive.

  • @user-lq7ks3ei8j
    @user-lq7ks3ei8j8 ай бұрын

    Thanks for this excellent lecture , I pray For you to be happy and long live.

  • @vahiddanesh4661
    @vahiddanesh46615 ай бұрын

    I was wondering how good can be someone in explaining complex subjects in an easy way.

  • @JP-wl2nz
    @JP-wl2nz Жыл бұрын

    Awesome lecture sir...🙏

  • @user-zv7dl6bp7v
    @user-zv7dl6bp7v6 ай бұрын

    amaaaaazing

  • @pavangaonkardonigadde
    @pavangaonkardonigadde Жыл бұрын

    ನಿಮಗೆ ಅನಂತ ಧನ್ಯವಾದಗಳು... ಗುರುಗಳೇ ಇದೊಂದು ಅದ್ಭುತ ಪ್ರದರ್ಶನ

  • @teatea5528
    @teatea55282 жыл бұрын

    He has 4k quality lectures, my eyes are so comfortable watching it.

  • @user-vg7zv5us5r
    @user-vg7zv5us5r Жыл бұрын

    23:57 dro/dt - Density can't become smaller or be infinitesimally small - it's a constant property of a mater even idealized for the sake to keep the conversation theoretical and abstract.

  • @pat2715
    @pat2715 Жыл бұрын

    gotta love this man

  • @himanshuraj1482
    @himanshuraj14822 жыл бұрын

    I am a fluid dynamics researcher at IIT Bombay. I want to do my Ph.D. at WashU. Now I am modeling fluid vortex around a Mobius Theorem.

  • @willyh.r.1216
    @willyh.r.1216 Жыл бұрын

    MVP....Most Valuable Professor of the year.

  • @anonymousowl5240
    @anonymousowl524012 күн бұрын

    Well, I wasn't expecting to have my entire outlook on the world around me changed today but it happened.

  • @sekus
    @sekus2 жыл бұрын

    I'm not disrespecting my professor, but I wish I had you teaching vector calculus concepts to me. I enjoyed your machine learning series. I'm looking forward to your next videos

  • @adrianp1596
    @adrianp15962 жыл бұрын

    excellent!

  • @felemezhasturk559
    @felemezhasturk5592 жыл бұрын

    A good refresher. Could you also show contuinty eqn for deformable control volume (i.e. V=V(t))?

  • @Bruh-vp6qf
    @Bruh-vp6qf Жыл бұрын

    Thank you

  • @manfredbogner9799
    @manfredbogner97995 ай бұрын

    very good

  • @paul_gradenwitz
    @paul_gradenwitz2 жыл бұрын

    One issue with this theorem is that we have to define how much flows through the surface at the same time. That mans that we integrate over the surface for one moment in time. After completion we can see how that result evolves over time, but we can't use the left part of the surface values of one time moment and add that to the right part of the surface for a later time moment. But this means that we have to know what simultaneity means in that case. Thanks!

  • @Divergent_Integral
    @Divergent_Integral2 жыл бұрын

    Thank you for posting this awesome lecture! I was wondering, though, what hardware and/or software did you use to animate your handwriting?

  • @RuthBingham

    @RuthBingham

    2 жыл бұрын

    I think he is standing behind a pane of glass and literally writing backwards.

  • @francescoghizzo

    @francescoghizzo

    Жыл бұрын

    @@RuthBingham I think that it's actually simpler than this. He's writing normally and then the video is inverted

  • @jonahansen
    @jonahansen Жыл бұрын

    There is something I seriously don't see starting at 10:00 to about 13:30 when talking about the little boxes filling the volume. The claim is that with an interior filled with boxes with positive divergences, only the boxes on the surface contribute to the surface integral, with the internal ones cancelling along their apposing surfaces with other adjacent boxes. This can't be true; here are two lines of reasoning which, for the sake of the first argument assume a constant, positive, divergence throughout the volume. One: Compare two cases that have the same surface, but different volumes. The integral of the divergence over the volume is proportional to the volume, but the surface integral of the flux would not increase to match if there was a cancellation of the field F at the apposing adjacent surfaces of the interior boxes. Two: Since the integrals are linear, the surface integral flux for a volume with a single box with positive divergence must be half of that with two interior boxes with the same positive divergence. But if they are adjacent, and something cancelled, it wouldn't be. I'm thinking of this a la Gauss's law for the electrical field at the surface as proportional to the enclosed charge. Am I missing something??

  • @thecodegobbler2179
    @thecodegobbler21792 ай бұрын

    @stevebrunton Is the gauss’s divergence theorem also relevant to transitions of chemical states? (Water turning to ice, dry ice to co2… etc? As it does flux mass to and from the volume through the surface area.)

  • @giro808
    @giro80811 ай бұрын

    thank you

  • @pierreafoutou7368
    @pierreafoutou73682 жыл бұрын

    Watching this while waiting for my next flight. Thanks

  • @ANTGPRO
    @ANTGPRO2 жыл бұрын

    Perfect, please more calculus lectures.

  • @wp4297

    @wp4297

    2 жыл бұрын

    What are you really interested in? Calculus is quite wide topics. Are you interested in some application/example with differential operators and evaluation of integrals? Three-dimensional space is enough for you? Are you interested in time derivative of integrals over time-dependent domains?...

  • @KalebAklilu
    @KalebAkliluАй бұрын

    Some thing I didn't understand is why we are assuming that each tiny boxes would work identically either as a source or sink. Isn't the divergence induced by the vector filed on the surface going to change from section to section

  • @claytonestey767
    @claytonestey7672 жыл бұрын

    Hi Dr. Brunton. As obscure as this seems is it scientifically useful to somehow perturb Guass's Divergence Theorem with an arbitrary differentiable function to see what would happen if non-conservation were to ever take place, and the consequence on the derived PDE?

  • @ahammedafzal7797
    @ahammedafzal77972 жыл бұрын

    Hi, I think there is some problem with the "explanation' of canceling off between fluxes in the video. The cancelling off takes place because the flux through an interfacial control surface will have different signs when taken in two adjacent control volumes.Anyone thought the same?

  • @jonahansen

    @jonahansen

    Жыл бұрын

    Ahammed - I also have a problem with the cancellation, and just posted a comment about it today (Sep 24, 2022), and after doing it I thought I should see if anyone else saw this too. I'm not sure if we have the same issue, but it sounds similar...

  • @pengyuanding4228
    @pengyuanding4228 Жыл бұрын

    Hi Steve, I have to say the tiny boxes analogy is a bit confusing. Because when you integrate over the volumn, you are integrate the divergence, so at each point the integrand is positive since each point is a source, which does not reflect any 'cancellation'. (If it does, then at the points in central region the integrand should become 0 since they are 'cancelled'.) Whilist the 'cancellation' happens between the vector field F itself. So it might not be the right intuition for the theorem.

  • @AmentasOnIce

    @AmentasOnIce

    7 ай бұрын

    I found this confusing as well. You can't cancel a bunch of sources.

  • @user-vg7zv5us5r
    @user-vg7zv5us5r Жыл бұрын

    26:39 Rho can't be continuously varying even if that term adheres to us looking how mass enters end exits particular volume. Maybe I collide density with hardness together, yet still...

  • @samirelzein1978
    @samirelzein19782 жыл бұрын

    Being slow to get it Will watch again A 3D simulation would be perfect for full visibility Cant thank you enough for the giant efforts

  • @VinayakPathak-xc6kp
    @VinayakPathak-xc6kp2 ай бұрын

    Hi Steve [URGENT!] Shouldn’t F be the velocity field vector V in this case, I think that is intuitive from dimensional matching and have also seen it written in the standard text book instead of F. Please correct me if I am wrong. Otherwise awesome lecture. Thanks and Regards Vinayak

  • @crackyflipside
    @crackyflipside2 жыл бұрын

    Fantastic lectures. Please increase microphone volume level next time.

  • @patheron7812
    @patheron78122 жыл бұрын

    I'm confused regarding a basic idea. If there are no sources in the volume, I don't understand why the flux as defined isn't always equal to zero. Where the field enters the volume the flux contribution F dot n would be negative and where the field exits the volume F dot n would be positive. So, the net flux would be zero.

  • @English1108

    @English1108

    Жыл бұрын

    have you figured out the answer to your question here? because I'm wondering the exact same thing

  • @shahabtariq2479
    @shahabtariq2479 Жыл бұрын

    Sir love you I am immensely thankful to you you are great My teacher didn't give me any concept any amount of concept of that topic❤ Love from Pakistan 🇵🇰🇵🇰 may Allah bless you ❤

  • @pierrot-baptistelemee-joli820
    @pierrot-baptistelemee-joli8202 жыл бұрын

    At 21:35 or so, does anyone know how we formally justify changing the total derivative in respect to time with a partial derivative with respect to time when we move the derivative operator inside the triple integral? Also, in this particular exemple, I get the feeling that this could only be true if the volume is not a quantity that depends on time, but I know that conservation on mass is always true and does not rely on such assumptions... How can I convince myself that this is true no matter what happens to the volume? And this is closely related to my last question : what does happen if we consider that the volume does depend on time? Can we still switch the integral with the total derivative? Thank you Steve Brunton for these videos! It's been a long time since I saw these topics (if ever for some of them!) and I really appreciate your enthusiasm and the quality of your work :)

  • @JHS-gu4lw
    @JHS-gu4lw15 күн бұрын

    This is so amazing!! 🥹👍

  • @d7ffab979
    @d7ffab9792 жыл бұрын

    I love your content. Your followers are brainy people. They love ur style. They are bored by Netflix, autodidacts. I love your lectures about Compressed Sensing.

  • @Shrira123
    @Shrira123 Жыл бұрын

    Amazing video, sir. Any1..Correct me if I'm wrong : He was able to interchange the order of derivative and integral because of the following>>> derivative of an integral= integral of a derivative. Just thought it might help some1 like me cause i was wondering how twas possible for a couple of minutes.

  • @bringstarlysyierlait4164
    @bringstarlysyierlait41649 ай бұрын

    Sir explain why divergence of electric field line is positive,,and negative,plse

  • @gabrielbelmont8691
    @gabrielbelmont86912 жыл бұрын

    Dear Sir, I cannot understand the part at 12:35 sec. If there is a perimeter which has continuous outward emerging arrows, then what about the arrows that are in +z direction (emerging in 3D), as flux F is coming/flowing out (not expanding).

  • @brownriceprod
    @brownriceprod2 жыл бұрын

    i can't do the marker squeaking... but props for learning to write backwards

  • @calebgeballe2724
    @calebgeballe27242 жыл бұрын

    Some facts about Gauss: Gauss could divide by 0 Gauss squared the circle He knew the last digit of pi He could construct lines with a compass and circles with a straight edge

  • @Eigensteve

    @Eigensteve

    2 жыл бұрын

    Love this comment!

  • @sanjaykrish8719

    @sanjaykrish8719

    2 жыл бұрын

    Very intelligent Gauss but never shared the rationale or the thought process 😒

  • @anshik567
    @anshik5672 жыл бұрын

    Sir you put d/dt inside integral but if volume is changing with time then also can we put d/dt inside integral

  • @lunaleonem3378
    @lunaleonem33785 ай бұрын

    2:38 The generalized Stoke's theorem would like a talk.

  • @vesselofmercy6988
    @vesselofmercy69882 жыл бұрын

    Is this guy writing backwards, or is there some kind of postprocessing effect that makes it have the correct orientation to the viewer? Great video btw, takes something complicated and makes it pretty intuitive.

  • @lioneloddo
    @lioneloddo2 жыл бұрын

    So, it means that, thanks to this equivalence between what happend in a volume and its surface, we can intuitively feel what is the conept of continuity. It's not the coninuity of the mathematcians, but rather of the physicians. What is the continuity ? To check at every scale and at every shape, this equivalence. If this rule is true then it means that the medium is continous. It's very surprising that for knowing something locally, we need to look at globally.

  • @sib5th

    @sib5th

    2 жыл бұрын

    “physicians”? “physicists” sound more likely!

  • @lioneloddo

    @lioneloddo

    2 жыл бұрын

    @@sib5th Sorry, I'm french ... ;)

  • @mariuspopescu7543
    @mariuspopescu75436 күн бұрын

    the name of the theorem is Gaus-Green Theorem

  • @brighttakyi9037
    @brighttakyi90374 күн бұрын

    Nice video but I do not understand the concept of the divergence in the volume, how they cancel out and how there was a surface without a divergence

  • @lioneloddo
    @lioneloddo2 жыл бұрын

    I just realized that if it can be said that the noise of a vacuum is 92 decibel, it's thanks to the Gauss's divergence theorem... As there is a kind of conservation law of the noise, and as the noise is given by a power, it's maybe, the conservation law of the energy which allows us to measure the sound of machines and equipments ...

  • @abcxyz9723

    @abcxyz9723

    2 жыл бұрын

    ??

  • @NolanManteufel
    @NolanManteufel2 жыл бұрын

    I think Gauss's divergence theorem is helpful when thinking about empathy flow through boundaries around emotional systems/machines. Thank you for making these videos.

  • @edmald1978
    @edmald197810 ай бұрын

    In this equation I see that units do not match: ∫∫_S ρF • n dS = ∫∫∫_V div(ρF ) dv on the LHS: [kg/m^3][m/s][m^2] = [kg/s] on the RHS: [kg/m^3][m/s][m^3] = [kg m / s] Please let me know what I am missing.

Келесі