Diffusion and Score-Based Generative Models

Ғылым және технология

Yang Song, Stanford University
Generating data with complex patterns, such as images, audio, and molecular structures, requires fitting very flexible statistical models to the data distribution. Even in the age of deep neural networks, building such models is difficult because they typically require an intractable normalization procedure to represent a probability distribution. To address this challenge, we consider modeling the vector field of gradients of the data distribution (known as the score function), which does not require normalization and therefore can take full advantage of the flexibility of deep neural networks. I will show how to (1) estimate the score function from data with flexible deep neural networks and efficient statistical methods, (2) generate new data using stochastic differential equations and Markov chain Monte Carlo, and even (3) evaluate probability values accurately as in a traditional statistical model. The resulting method, called score-based generative modeling or diffusion modeling, achieves record performance in applications including image synthesis, text-to-speech generation, time series prediction, and point cloud generation, challenging the long-time dominance of generative adversarial networks (GANs) on many of these tasks. Furthermore, score-based generative models are particularly suitable for Bayesian reasoning tasks such as solving ill-posed inverse problems, yielding superior performance on several tasks in medical image reconstruction.

Пікірлер: 38

  • @Blueshockful
    @Blueshockful7 ай бұрын

    recommended to anyone who wants to understand beyond the mere "noising/denoising" type explanations on diffusion models

  • @moaidali874
    @moaidali8748 ай бұрын

    This one of the best presentations I have ever attended

  • @opinions8731
    @opinions873110 ай бұрын

    What an amazing explanation. Wish there was an AI/authors explaining their papers so clearly.

  • @StratosFair
    @StratosFair Жыл бұрын

    Thank you guys for making this talk available on your KZread channel. This is pure gold

  • @binjianxin7830
    @binjianxin7830 Жыл бұрын

    What a pleasant insight to think of gradients of the logits as score function! Thank you for sharing the great idea.

  • @LifeCodeGame
    @LifeCodeGame Жыл бұрын

    Amazing insights into generative models! Thanks for sharing this valuable knowledge!

  • @mm_Tesla_mm
    @mm_Tesla_mm8 ай бұрын

    I love this talk! amazing and clear explanation!

  • @user-ux3wg1xj9s
    @user-ux3wg1xj9s5 ай бұрын

    9:52 intractable to compute integral of exponential of neural networks 12:00 desiderata of deep generative models 19:00 the goal is to minimize fisher divergence between abla_x log(p(x_data)) and score function s(x), we don't know ground truth log(p(x_data)) but score matching is equivalent to fisher divergence up to the constant, thus same in the optimization perspective. 23:00 however, score matching is not scalable, greatly due to the Jacovian term. the term requires many times of backpropagation computations. Thus before computing fisher divergence, project each terms with vector v to make the Jacobian disappear, and thus become more scalable, this is called sliced score matching. 29:00 denoised score matching. The objective is tractable because we design the perturbation kernel by hand(the kernel is easily computable). However because of added noise, the denoised score matching can't estimate noise free distributions. Also the variance of denoising score matching objective becomes bigger and bigger eventually explodes when the smaller the magnitude of the noise. 31:20 in case of Gaussian perturbation kernel, denoising score matching problem takes more simpler form. Optimize the objective with stochastic gradient descent. Be careful to choose appropriate magnitude of sigma. 36:00 sampling from langevin dynamics, initialize x0 from simple(gaussian, uniform) distribution and z from N(0, 1), and then repeat the procedure. 37:20 naive version of langevin dynamics sampling not working well in practice because of the low density region

  • @xuezhixie1640
    @xuezhixie16408 ай бұрын

    Really amazing explanation for the entire diffusion model. Clear, great, wonderful work.

  • @jacksonyan7346
    @jacksonyan73465 ай бұрын

    It really shows how good the explanation is when even I can follow along. Thanks for sharing!

  • @ck1847
    @ck1847 Жыл бұрын

    Extremely insightful lecture that is worth every minute of it. Thanks for sharing it.

  • @xiaotongxu1528
    @xiaotongxu15284 ай бұрын

    Very clear! Thanks for this amazing lecture!

  • @CohenSu
    @CohenSu Жыл бұрын

    16:54 all papers referenced... This man is amazing

  • @peterpan1874
    @peterpan18746 ай бұрын

    a very accessible and amazing tutorial that explained everything clearly and thoroughly!

  • @coolguy69235
    @coolguy692352 ай бұрын

    khatarnaak aadmi hain !! Very good explanation !!! sab ka saath, sab ka vikaas

  • @huseyintemiz5249
    @huseyintemiz52498 ай бұрын

    Amazing tutorial

  • @hasesukkt
    @hasesukkt3 ай бұрын

    Amazing explation for me to understand the diffusion model!

  • @user-zr4ns3hu6y
    @user-zr4ns3hu6y13 күн бұрын

    Such a great explanation

  • @hoang_minh_thanh
    @hoang_minh_thanh5 ай бұрын

    This is amazing!

  • @tomjiang6831
    @tomjiang683115 күн бұрын

    literally the best explaination!!!

  • @user-ki1jl1fb5d
    @user-ki1jl1fb5d7 ай бұрын

    Oh, very clear explanation! Would it be possible to share this slide?

  • @YashBhalgat
    @YashBhalgat11 ай бұрын

    46:30 was a true mic-drop moment from Yang Song 😄

  • @gaspell
    @gaspell3 ай бұрын

    Thank you!

  • @uxirofkgor
    @uxirofkgor Жыл бұрын

    damn straight from yang song...

  • @twistedsector
    @twistedsector2 ай бұрын

    actually such a fire talk

  • @dy8576
    @dy85763 ай бұрын

    Such an incredible talk, i was just curious about how everyone here keeps track of all this knowledge, would love to hear from you all

  • @chartingwithliv
    @chartingwithliv Жыл бұрын

    Crazy this is available for free!! ty

  • @adrienforbu5165
    @adrienforbu51654 ай бұрын

    Thank you so much song

  • @beluga.314
    @beluga.3148 ай бұрын

    When we can obatin equivalence between DDPM(training network to obtain noise) and score based training in DDPM, then shouldn't both give same kind of results?

  • @julienblanchon6082
    @julienblanchon60826 ай бұрын

    Wow that was cristal clear

  • @JuliusSmith
    @JuliusSmithАй бұрын

    Excellent overview of excellent work, thank you! I am worried about simplified CT scans, however. Wouldn't we get bias toward priors when we're looking instead for anomalies? There needs to be a way to detect all abnormalities with 100% reliability while still reducing radiation. Is this possible?

  • @RoboticusMusic
    @RoboticusMusic8 ай бұрын

    What is now utilizing this, is it still SoTA? Did this improve OpenAI, MJ, Stability, etc.? It sounds promising but I need updated information.

  • @mariuswuyo8742
    @mariuswuyo8742Ай бұрын

    I have a question about Part "prpo. evaluation": does it mean to use ODE to calculate the likelihood (P_theta(x_0)), but how to input the original data x_0 to the diffusion model?

  • @jimmylovesyouall
    @jimmylovesyouall4 ай бұрын

    stanford还是牛逼,谢谢。

  • @yuxinzhang4228
    @yuxinzhang42289 ай бұрын

    Why annealed langevin dynamics from the highest noise level to the lowest noise level instead of langevin dynamics sampling directly from the score model with the lowest noise level?

  • @DrumsBah

    @DrumsBah

    4 ай бұрын

    You use the perturbed noise to traverse and converge to high density areas via Langevin dynamics. Due to the manifold hypothesis large areas of the data space have no density and thus no gradient for langevin to traverse. The large noise is traverse these spaces. Once closer to the higher density, the noise schedule can be decreased and the process repeats

  • @timandersen8030
    @timandersen8030Ай бұрын

    How to be good in math like Dr. Song?

  • @user-xb8xz2oo5c
    @user-xb8xz2oo5c5 күн бұрын

    27:44

Келесі