Ch 2: What are kets and wavefunctions? | Maths of Quantum Mechanics

Hello!
This is the second chapter in my series "Maths of Quantum Mechanics." In this episode, we'll go over how particles are represented by vectors (aka kets) and how wavefunctions relate to the linear algebraic framework.
If you have any questions or comments, shoot me an email at:
quantumsensechannel@gmail.com
Thanks!
Animations:
All animations created by me within Python, using Manim. To learn more about Manim and to support the community, visit here:
Link: www.manim.community/
Music:
--------------------------------------------------------------
♪ blinded by Patricia Taxxon
Link : patriciataxxon.bandcamp.com/a...
--------------------------------------------------------------

Пікірлер: 178

  • @pizzarickk333
    @pizzarickk333 Жыл бұрын

    This series is exactly what I've always been dreaming about. We finally have the 3b1b of quantum mechanics.

  • @kashyaptandel5212

    @kashyaptandel5212

    Жыл бұрын

    ikr!

  • @andrewferris8169
    @andrewferris8169 Жыл бұрын

    Man, these are awesome. I passed QM 1 but these videos would have made it so much clearer. I think a video of this style and quality on Local Gauge Symmetries and Forces would be awesome.

  • @padrickbeggs7071

    @padrickbeggs7071

    Жыл бұрын

    That would be pretty sweet

  • @ToriKo_

    @ToriKo_

    Жыл бұрын

    Great suggestion, I would love to learn why it’s natural and useful to describe the ‘symmetries’ of particles etc

  • @mikevaldez7684

    @mikevaldez7684

    Жыл бұрын

    Andrew the Fairy, you didn't mention your grade so we can safely assume a D- or C- at best. 🤣🙋 Later dweeb

  • @mikevaldez7684

    @mikevaldez7684

    Жыл бұрын

    @@ToriKo_ figure it out dolt

  • @ToriKo_

    @ToriKo_

    Жыл бұрын

    @@mikevaldez7684 were you having a bad day or do you always make comments like this?

  • @joshdeconcentrated2674
    @joshdeconcentrated2674 Жыл бұрын

    These videos are SO incredibly helpful. understanding the concepts better is always a good thing and especially for futureproofing. super underrated channel!

  • @it6647
    @it6647 Жыл бұрын

    0:00-Recap 0:54-Formal definition of a vector space 2:12-Benefits of vector spaces 2:55-Quantum state as a vector 5:28-Continuous physical quantities (position) 9:35-Wavefunctions as coefficients of ket vectors for continuous list of kets

  • @brunofagherazzi9903
    @brunofagherazzi9903 Жыл бұрын

    What an amazing content you're building right here. I've been waiting for this kind of videos for years. Thank you SO much!

  • @jamesbentonticer4706
    @jamesbentonticer4706 Жыл бұрын

    I really hope this series does well. A way to conceptualize quantum mechanics could revolutionize how its taught.

  • @pacificll8762

    @pacificll8762

    Жыл бұрын

    I agrée

  • @Juxtaposed1Nmotion

    @Juxtaposed1Nmotion

    Жыл бұрын

    A lot of smart people are saying that QM needs to be re-formalized

  • @roelofvuurboom5939
    @roelofvuurboom593911 күн бұрын

    Great explanation. Explanation of why linear algebra in QM is so simple and intuitive. Really cool.

  • @Miguel_Noether
    @Miguel_Noether Жыл бұрын

    I already have QM notions but the way you are presenting this is so good👌

  • @blacksmith1634
    @blacksmith1634 Жыл бұрын

    I'v been waiting for something like this a while. The mathematics behind quantum physics always seem to be like understandable math in a language I don't know.

  • @e.s.r5809
    @e.s.r5809 Жыл бұрын

    Amazing video, really clearly explained! Thanks! This is fantastic prereading for my next semester. :)

  • @yenbinh2239
    @yenbinh2239 Жыл бұрын

    As a student who is intensively learning Quantum Mechanics, this video is great!!!! Thanks a lot

  • @sanderdude3901
    @sanderdude39013 ай бұрын

    MAN this series is amazing! Thank you for putting in the time and effort to make this!

  • @alexba88ify
    @alexba88ify Жыл бұрын

    Loving this series! Thanks so much for doing this!

  • @michaeledwardharris
    @michaeledwardharris Жыл бұрын

    Wow, this was excellent! Really great presentation style. I'm looking forward to watching the remaining videos. Thanks!

  • @davidlearnforus
    @davidlearnforus9 ай бұрын

    This series is brilliant! Thank you so much for all great work!

  • @Self-Duality
    @Self-Duality Жыл бұрын

    Beautifully explained!

  • @WestOfEarth
    @WestOfEarth Жыл бұрын

    Really enjoying this series! Thank you so much.

  • @niranjanca3534
    @niranjanca353411 ай бұрын

    THE BEST KZread channel which made me understand the quantum things all the best brother you really should have bright future.....❤

  • @vincentlin7240
    @vincentlin72407 ай бұрын

    Thank you so much for saving my quantum mechanics midterm and my life. Best quantum lecture ever.

  • @nablarnermk8844
    @nablarnermk88446 ай бұрын

    THANKYOU FOR EXISTING, I HAVE MY QUANTUM MECHANICS EXAM IN 2 MONTHS AND A YEAR AGO THIS WASN'T AROUND YET TO HELP!!!! KEEP UP THE EXCITING AND GOOD WORK

  • @MaruriPorzio
    @MaruriPorzio Жыл бұрын

    I follow Benson, this episodes fills all math I need to satsfatorely understand QM. TKS

  • @Marevks
    @Marevks6 ай бұрын

    This is what i needed in my life right now. Wow. So incredibly well explained… i needed to dig deep to find this channel thanks god i did

  • @ES-qe1nh
    @ES-qe1nh Жыл бұрын

    Amazing playlist. Not overly reductive or too in depth.

  • @johnhamilton7762
    @johnhamilton7762 Жыл бұрын

    Love the series. Great work.

  • @NovaWarrior77
    @NovaWarrior77 Жыл бұрын

    MY GUY YOU LITERALLY KILLING IT

  • @Mac-zl4po

    @Mac-zl4po

    Жыл бұрын

    My man

  • @zeropotential6830
    @zeropotential68308 ай бұрын

    this is just a blessing. thank you so much

  • @GreenFlyter
    @GreenFlyter Жыл бұрын

    That is brilliant work! Thank you

  • @weinsim3856
    @weinsim3856 Жыл бұрын

    Thank you so much! youre explaining it in a very clear and understandable way, which i think is going to help me a lot for uni

  • @nandagopalgopakumar5626
    @nandagopalgopakumar5626 Жыл бұрын

    Another Amazing channel! Thank you!

  • @MaruriPorzio
    @MaruriPorzio10 ай бұрын

    Excellent, suits perfectly to what I need to better understand QM. Thanks & congrats

  • @physicsbutawesome
    @physicsbutawesome Жыл бұрын

    These videoas really have a nice flow and are interesting to watch.

  • @pandiest7764
    @pandiest7764 Жыл бұрын

    as a starting physics major, i enjoy watching videos of all of the higher divisions of physics whilst i'm still in classical physics. it's fun to see what i will be learning later on in my education. thank you!

  • @moslynmoslyn679

    @moslynmoslyn679

    Ай бұрын

    Same here bro

  • @kholitakhawla3622
    @kholitakhawla36229 ай бұрын

    Please keep creating series like this

  • @family-accountemail9111
    @family-accountemail91118 ай бұрын

    Thanks for this series! It's very valuable to me. I have only watch a few so far but this approach of explaining the maths and why it is suitable is right for me.

  • @family-accountemail9111

    @family-accountemail9111

    8 ай бұрын

    If I was teaching a course on am I would use this and ask students to watch this

  • @allanolave2701
    @allanolave2701 Жыл бұрын

    Thank you so much! I love your explanation.

  • @atanumaulik7093
    @atanumaulik7093 Жыл бұрын

    Amazing! Keep up the good work.

  • @speedspeed121
    @speedspeed121 Жыл бұрын

    I just graduated in June. This video gave me a better intuition than two quarters of QM

  • @neil6477
    @neil647710 ай бұрын

    Fantastic! It was many years ago that I took a course on quantum mechanics (late 1970s) and found that little was explained about where the mathematics came about. Rather an equation was written on the board, followed by some words spoken by the lecturer - most of which I didn't follow. I passed the course by doing the usual student trick of practising sufficient past papers in the hope that my own exam would be similar - it was! However, despite being a physics student I was totally put off the subject of QM and didn't take any more classes (much to my regret). Now, in my 70s and long since retired I find these videos both educational and, more importantly, thoroughly enjoyable. Thank you so much for your work and I hope to learn a lot more in the coming weeks. 😀👍 (I am wondering whether we shall see actual worked examples which use the maths - but I guess I shall find out later?)

  • @vianadon
    @vianadon8 ай бұрын

    You are awesome! Thanks for everything!

  • @waltertoki1
    @waltertoki12 ай бұрын

    This is a very nice introductory approach to learn Quantum Mechanics. However a traditional approach of Planck’s constant, the Bohr model, de Broglie particle wave duality and finally Schroedinger’s wave equation with eigenvalue solution’s is more complete and easier to digest. Finally matrices can be introduced with unitary and hermitian operators and eventually the description of the electron spinors.

  • @sergiolucas38
    @sergiolucas38 Жыл бұрын

    Excellent video, man, thanks :)

  • @ToriKo_
    @ToriKo_ Жыл бұрын

    Cool video. Even though I can see that I’m not grasping everything, it’s so appealing how it seems like you’re making it a priority to get us on board with the packaging these ideas come with, helping us to see that actually this is a super natural way of working with these physical phenomena, and helping us feel like we actually *want* these notations. As small as it was, I got so much joy out of saying “position” out loud as a guess for a continuous quantity, and having that confirmed by you! One thing I don’t understand is how, 11:13, if we have use a ket to represent *all* the possible information about our particle, then why do have different outcome kets that represent only partial information about our particle, like energy or angular momentum. 11:27. How can we label one |psi> ‘energy’ and another |psi> as ‘angular momentum’, when our ket is supposed to represent *all* the possible information of our particle. Which should cover all information about our particle, like energy, angular momentum, spin, mass etc?

  • @narfwhals7843

    @narfwhals7843

    Жыл бұрын

    Are you familiar with linear algebra? This is a change of basis. When we write |E1> we have chosen to represent our state in the "Energy basis" and when we write |p1> we chose the "momentum basis". These are both valid choices to _represent_ our general state vector |psi> and there are many more. In any basis |psi> will be a superposition of basis vectors. |psi>=c1|E1>+c2|E2>+c3... or |psi>=C1|p1>+C2|p2>+C3... Where the c's and C's are the coefficients for that particular basis. Any basis that spans the entire space will contain the full information, but some(like spin) only span a subspace.

  • @ToriKo_

    @ToriKo_

    Жыл бұрын

    @@narfwhals7843 wow okay that’s super interesting. I’m not really familiar with linear algebra, but I’ve seen quite a few videos explaining basis vectors. Your explanation makes sense to me but I imagine there are a bunch of subtleties and inner workings to the explanation that I’m failing to grasp. Thanks for ur time and explanation

  • @stanislavtsybyshev7453

    @stanislavtsybyshev7453

    Жыл бұрын

    Exactly the question that popped into my mind after watching - thanks for asking this!

  • @angelmendez-rivera351

    @angelmendez-rivera351

    Жыл бұрын

    @@ToriKo_ Well, the entire point of Chapter 1 in the series was precisely the point that you *need* linear algebra to have a solid grasp on these subjects, because ultimately, quantum mechanics is just one particular way of doing linear algebra. In fact, the video explicitly tells you that you need to have at least some minimal education in linear algebra, even if not formal. The video recommended 3b1b's linear algebra series on YT, which I agree with. Having the basics down is absolutely fundamental if you want to have a solid grasp of the intuition behind the mathematics of quantum mechanics.

  • @ashheralikhan6043
    @ashheralikhan6043 Жыл бұрын

    Its brilliant. Go on . Keep it up

  • @curtpiazza1688
    @curtpiazza16889 ай бұрын

    WOW! Great stuff! 😊

  • @TheFireBrozTFB
    @TheFireBrozTFB Жыл бұрын

    Keep it up!! Love the content

  • @DarkNight0411
    @DarkNight04114 ай бұрын

    Beautiful!

  • @ohidulislam5545
    @ohidulislam55458 ай бұрын

    Hey man! Great job! Would love to see long videos like 20 or 30 minutes

  • @keroshehab1543
    @keroshehab1543 Жыл бұрын

    Wow ,your on fire broo ♥️♥️

  • @kwintenderijck3110
    @kwintenderijck31109 ай бұрын

    This is amazing

  • @faenzarfaenzar2636
    @faenzarfaenzar26368 ай бұрын

    Amazing serie !!

  • @Mouse-qm8wn
    @Mouse-qm8wn6 ай бұрын

    Super Nice videos, thank you so much 😊

  • @blusham4629
    @blusham4629 Жыл бұрын

    Love the series

  • @admiretsikayi8238
    @admiretsikayi82386 ай бұрын

    Good work.

  • @bibek2599
    @bibek2599 Жыл бұрын

    Very nice explanation

  • @Masrawy_79
    @Masrawy_79 Жыл бұрын

    More than excellent 👍👍

  • @reefu
    @reefu Жыл бұрын

    Finally!!! Let’s go!

  • @san99539
    @san99539 Жыл бұрын

    Why you are so good!

  • @aramsarkisyan8061
    @aramsarkisyan8061 Жыл бұрын

    This is extremelu useful

  • @PETERTRITSCH
    @PETERTRITSCH7 ай бұрын

    Awesome !

  • @EriiikaGuerra
    @EriiikaGuerra Жыл бұрын

    This is incredible! Why is QM making so much sense now?

  • @jdbrinton
    @jdbrinton Жыл бұрын

    Thank you thank you thank you!

  • @mariocesarsousa
    @mariocesarsousa Жыл бұрын

    Excellent bro✍️✍️✍️ Thanks for sharing. 💚💚💚💚👽👽👽👽

  • @jinishgaming3240
    @jinishgaming3240 Жыл бұрын

    Excellent buddy

  • @jorgesaxon3781
    @jorgesaxon37816 ай бұрын

    I find it fascinating and also a bit terrifying how looking at quantum mechanics through the lens of computer science trivalizes it massively (arrays, functions, mappings etc)

  • @andreaq6529
    @andreaq6529 Жыл бұрын

    These videos are awesome, instantly subscribed. I also have a question: why is energy considered as a vector?

  • @quantumsensechannel

    @quantumsensechannel

    Жыл бұрын

    Hello! Thank you for watching. I think there may be some confusion into what we mean by “vector”. Energy itself is a scalar quantity. However, in the quantum mechanical framework, our particle can be in a state representing a certain energy measurement outcome. This state is represented by a vector, called a ket. The terminology is weird, but the vectors we’re talking about in quantum mechanics are a bit different than the vectors in classical mechanics. So energy is still a scalar quantity when measured. -QuantumSense

  • @andreaq6529

    @andreaq6529

    Жыл бұрын

    @@quantumsensechannel Thank you!

  • @angelmendez-rivera351

    @angelmendez-rivera351

    Жыл бұрын

    Energy is not a vector, but there are vectors associated with a particular energy. These are called the "eigenstates" for that energy.

  • @siamsama2581
    @siamsama2581 Жыл бұрын

    Very good

  • @AndreKowalczyk
    @AndreKowalczyk6 ай бұрын

    So far it's going great! Thank you. Still not clear how a continuous x can be represented by a ket vector (which is a list of discrete values). I hope this will become clear later.

  • @davidhuo6902
    @davidhuo6902 Жыл бұрын

    just love it

  • @quanrumride1027
    @quanrumride10275 ай бұрын

    damn...such a nice class..

  • @johannbrrr8065
    @johannbrrr80656 ай бұрын

    When we go from a discrete sum to an integral do we have to change the meaning of the coefficients from probability to probability density?

  • @florisv559
    @florisv559 Жыл бұрын

    Well done. I do have a gripe though with how you describe a function as something that is necessarily continuous. But the sequence 1, 1/2, 1/3, ... is also a function, from the natural numbers to the rationals, because it links each natural number to at most one rational number.

  • @davidgruzman5750
    @davidgruzman57508 ай бұрын

    Thank you a lot for very clear explanation! I am a bit confused by picture on timem point 11:21 . In one hande - Phi is said to be vector containing all information about the particle. Than i see on the picture that it is equal to linear combinartion of energies and, in the same time - of angular momentums. Please tell me what i miss here..

  • @opd-cp3ee
    @opd-cp3ee Жыл бұрын

    Please create a Patreon page, if you haven't done so already! I'd definitely support you there :) Also, for videos in the future you might want to reduce the breaths in the audio (via editing or with a different mic or angle?) Sorry!! I feel a little bad for nitpicking, because I really love the way you explain and am extremely grateful for the time and energy you put into these videos. I've even thought about starting a series myself, because this really was missing on KZread. (although I don't think I'd reach the ease at which you explain, not to speak of the animation!) Thanks thanks thanks! maxi

  • @shreenathwalvekar1009
    @shreenathwalvekar1009 Жыл бұрын

    Keep it up

  • @serenowsky1284
    @serenowsky128410 ай бұрын

    When you say physical properties, does this include all innate properties that a particle would have by definition? For example, would a quantum state hold the property of a -1 charge in an electron, or would that be unnecessary?

  • @nicolasPi_
    @nicolasPi_6 ай бұрын

    11:12 shall we say that the quantum state contains all the information about the particle at an instant t? Does the quantum state change over time or is its time evolution self-contained?

  • @manstuckinabox3679
    @manstuckinabox3679 Жыл бұрын

    even if it wasn't continous (with plank's constant coming in mind) the absurdly large amount of possibilities AND the fact that by definition dx is kind of an approximation, I think integral is quite the best way with dealing with the super-position.

  • @samsonling3142
    @samsonling314210 ай бұрын

    when will the square of wavefunction kick in to be probability density function of position? Is that we do an inner product?

  • @ayhamhalalsheh221
    @ayhamhalalsheh221 Жыл бұрын

    that was adorable

  • @jaybae8056
    @jaybae80562 ай бұрын

    so what does: (-1/2)del squared minus 1/r) |2s》 mean?

  • @user-ui5lc3kp7g
    @user-ui5lc3kp7gАй бұрын

    Please make a same for General Relativity

  • @drewnoren8416
    @drewnoren8416 Жыл бұрын

    At 4:24 you say that we can describe the same quantum state with a linear combination of energies, and with a linear combination of momentums. Does this mean that this combination of energies is equal to the combination of momentums (representing an energy state with momentums), or are these two linear combinations measuring completely different quantities? If they are unrelated, then how can we tell the difference between them if we use the same symbol to represent the quantum states?

  • @quantumsensechannel

    @quantumsensechannel

    Жыл бұрын

    Hello, thank you for watching! This is a good clarifying question. You are correct that those two linear combinations describe the same quantum state. So in that quantum state, you are in a superposition of possible angular momenta AND superposition of possible energies. I would be careful in saying “an energy state with momenta”, since we are not in an energy state, we are in a superposition of energy states. And although I showed those two, the particle could also simultaneously be in a superposition for position outcomes, or any other physical quantity. In a later episode, we formalize this a bit by showing that these “outcome states” are the eigenstates of the corresponding observable, which form a basis. So these different linear combinations are just ways to write our quantum state in different bases. So how do we distinguish between the energy and angular momenta linear combinations? You don’t! They exist at the same time, under the same quantum state. They just show up when expanding our quantum state in that respective linear combination. In order to break the superposition, you have to make a measurement, which changes your quantum state (and we’ll also discuss this more in a later episode). Let me know if this doesn’t clear it up! -QuantumSense

  • @SSNewberry
    @SSNewberryАй бұрын

    The vector space requirement are the axioms for vectors.

  • @kennethhou912
    @kennethhou912 Жыл бұрын

    could the ket of some particle be thought of as the weighted (by probability) summation of all possible positions?

  • @angelmendez-rivera351

    @angelmendez-rivera351

    Жыл бұрын

    You are close, but not quite there. A superposition is indeed just a weighted summation of possible "elementary" states, as you suggest, but those states often have nothing to do with position. What these states are ultimately depends on what exactly the system is.

  • @TJ-hs1qm
    @TJ-hs1qm7 ай бұрын

    So this is how you calculate the expected value with the wave function representing the probability density ?

  • @leventegyorgydeak1300
    @leventegyorgydeak130021 күн бұрын

    10:13 - There is something I havent understood for a long time here. psi is in position representation, right? Here you just turn the position wave function into a "continuous vector". However psi can also be expressed in terms of momentum, then it would be |psi> = integral(c(p)*|p>) right? but that means that |psi> = integral(psi(x)*|x>) = integral(c(p)*|p>) which I am pretty sure is not true. Do those psi-s then represent a different hilbert space element, and it is just poor notation that we use the same letters for them? Can someone please explain?

  • @enderw88
    @enderw88 Жыл бұрын

    Does anyone know of a textbook that takes this approach?

  • @yuminti3368
    @yuminti336820 күн бұрын

    I still find it hard to twist my mind around vector space is just describing patern because in my mind I see vector as arrows. It would be great if you could show me an example of vector space made by a different set of object! Very please!

  • @exploring197
    @exploring197 Жыл бұрын

    Please explain about hermitian conjugate? Physical significance of wavefunction being hermitian.

  • @quantumsensechannel

    @quantumsensechannel

    Жыл бұрын

    Hello, thank you for watching. I have an episode released on hermitian operators, where we define what they are. Also, in general the wavefunction is not hermitian (since it can be complex). -QuantumSense

  • @bharath__100
    @bharath__100 Жыл бұрын

    4:47 - is it like, we can use any operator to find a quantum state? Like energy operator or momentum operator?

  • @drdca8263

    @drdca8263

    Жыл бұрын

    In some systems, some operators will have for each possible value you might measure for it, a 1D space of vectors, and in this case this works as a nice basis for the vector space. In many systems, this will be true for energy. However, not all operators will, by themselves, pick out a good basis.

  • @pefactz9.9m3
    @pefactz9.9m3Ай бұрын

    Good❤❤❤❤

  • @vatsuu8865
    @vatsuu88659 ай бұрын

    How do you even un descritize the position at 9:00

  • @kennethhou912
    @kennethhou912 Жыл бұрын

    is the fact that the linear combination of outcome kets equaling the quantum state an axiom or a consequence?

  • @quantumsensechannel

    @quantumsensechannel

    Жыл бұрын

    Hello! Thank you for watching, this is a great question. In truth, it is an axiom of the quantum framework. We haven't derived this fact, since we have nothing to derive it from! But given what we showed in the first episode, hopefully it makes some intuitive sense why we would have such an axiom in our quantum theory. -QuantumSense

  • @kennethhou912

    @kennethhou912

    Жыл бұрын

    @@quantumsensechannel thanks so much for the response! it does make sense why it would be an axiom of the system rather than a consequence of how addition and vectors are defined. i can’t wait to continue exploring your series!

  • @agentprismarine2778
    @agentprismarine2778 Жыл бұрын

    5:53 isn't the smallest possible length the plank length ? Which should make measures of length discrete?

  • @amoghk.m.6769

    @amoghk.m.6769

    11 ай бұрын

    The plank length is many many orders smaller than the length scales we are operating at.

  • @JavedAli-pm9nt
    @JavedAli-pm9nt9 ай бұрын

    Kindly respond to my question, why do we represent particles by vectors in quantum mechanics..... please clear this confusion

  • @PhotonicJerk
    @PhotonicJerk Жыл бұрын

    You are saying that KET is nothing but another form of vector notation. Does this mean that It is the same plain old vector that we're used to or is it just an analogy? At 4:12 in the linear combination you have used energies in the KET notation. As far as I know energy is not a vector. I believe I am missing something but I am not sure what.

  • @narfwhals7843

    @narfwhals7843

    Жыл бұрын

    What a vector is is defined earlier in the video. At 1:39. Objects that obey these rules are vectors. If by "plain old vector" you mean arrow, then sort of. Arrows generally are vectors. So you can use the vector addition rules you are used to for an intuition. Energy itself is not a vector. But Energy _states_ are objects in our vector space. The energy of that state is the measurement outcome and just a number, but we can collect the different possibilities of outcomes into a vector. Similar to how a basis vector can basically be represented by a single number because all the other coefficients are 0.

  • @angelmendez-rivera351

    @angelmendez-rivera351

    Жыл бұрын

    This is why actually taking a linear algebra course, as was explicitly recommended in Chapter 1, is important. This video series is not meant to teach you linear algebra. This video is meant for you to already know linear algebra, and from there, to build on top of those linear-algebraic concepts to achieve an understanding of quantum mechanics.

  • @kennethhou912
    @kennethhou912 Жыл бұрын

    how important is the knowledge that the mapping of a ket to it's probability is continuous to the calculation of the integral?

  • @quantumsensechannel

    @quantumsensechannel

    Жыл бұрын

    Hello! The continuity of the coefficient function is actually very important, and in all honesty, I felt kind of bad brushing it off to later in the series. Remember that the coefficient function is the wavefunction, so we're asking how important the continuity of the wavefunction is. If you've ever solved the Schrodinger equation before, you might have seen that continuity is a consequence of solving that equation. More intuitively, we'll show that the momentum operator is proportional to the first derivative of the wavefunction. So if our wavefunction weren't continuous, then the resulting derivative would blow up at a point, which gives us nonsense for the resulting momentum. This is more of a physical interpretation, but I think it gives good intuition regardless. Hopefully this answered some of your question! -QuantumSense

  • @kennethhou912

    @kennethhou912

    Жыл бұрын

    @@quantumsensechannel not going to lie, this is my first introduction to quantum mechanics. I am simply a math major that decided to learn quantum mechanics out of interest, but it is cool to see that there is a proof for why the coefficient is always continuous. hopefully my questions aren’t too annoying, and thank you for the time you take to answer them!

  • @HilbertXVI

    @HilbertXVI

    Жыл бұрын

    @@kennethhou912 If you're a math major check out Brian Hall's "Quantum Theory for Mathematicians". It's very rigorous and probably much better for a mathematically inclined person than the average QM textbook.

  • @angeldude101
    @angeldude101 Жыл бұрын

    Sure, I can take an infinitely long vector written as an integral. It really is just a linear combination of basis vectors, just with a continuous range of such basis vectors.

  • @lolsadboi3895
    @lolsadboi38959 ай бұрын

    whenever I hear you refer to kets as vectors, I keep on wanting to ask "how many dimensions does a ket have? How is 'all the information about a particle' arranged in the vector? Why is it a vector instead of a matrix or whatever has more dimensions than a matrix?" 11:22 throws me off more because looks like you can say |ψ> = |ψ> ∴ c₁|E₁> + c₂|E₂> + c₃|E₃> + c₄|E₄> = a₁|L₁> + a₂|L₂> + a₃|L₃> ∴ energy=angular momentum which,,, I don't think is right... i mean, they're related for sure but they're not equal, right? i'm confused by the notation x.x

  • @deusdat
    @deusdat4 ай бұрын

    Why use the same symbol for the vector and the wave function? It's confusing.