A (literally) complex integral

Tackling a fascinating integral using some cool methods from complex analysis.
My complex analysis lectures:
• Complex Analysis Lectures
If you like the videos and would like to support the channel:
/ maths505
You can follow me on Instagram for write ups that come in handy for my videos and DM me in case you need math help:
maths.505?igshi...
My LinkedIn:
/ kamaal-mirza-86b380252
Advanced MathWear:
my-store-ef6c0f.creator-sprin...

Пікірлер: 40

  • @MyOldHandleWasWorse
    @MyOldHandleWasWorseАй бұрын

    As soon as you got to the step in which you only had a trig in the exponent, and a composite of two trig functions, I realized (with the help of the title) that this is like one of my favorite qualifying exam problems, just slightly more complicated. With that in mind, you could have used Cauchy's Integral Theorem after one more change of variables after that same step, say letting z=e^{ix} and the problem becomes a contour integral. Of course, the two methods are equivalent by the same theorem - many such cases in complex analysis!

  • @SuperSilver316

    @SuperSilver316

    Ай бұрын

    Yeah I was thinking about this substitution as well!

  • @jeromemalenfant6622
    @jeromemalenfant6622Ай бұрын

    Or you could use Euler's formula at the getgo and write the cosine as the real part of the exponential: cos (1/(1+x^2) = Re exp [ i /(1+x^2) ], and bring it into the exponential of x/(1+x^2): I = Re integral from (- inf) to (+ inf) exp [ (x+i)/ (1+x^2) dx/(1+x^2) Since 1+ x^2 = (x+i)(x-i), the exponential becomes exp [ 1/(x-i) ]. The other factor becomes 1/(x+i)(x-i), with poles at z= +- i. Closing the contour below the x-axis to enclose the pole at z=-I, and to avoid the exponential pole at z= +I, you get from Cauchy's Theorem I = Re (-2 pi i) /(-2i) exp [ 1/(-2i) ] = Re pi exp [ I/2 ] = pi cos (1/2)

  • @srikanthtupurani6316
    @srikanthtupurani631619 күн бұрын

    If we consider regions like semicricle with centre at origin and use cauchy residue formula. This entire thing will get simplified. Many of the integrals can be evaluated using cauchy residue formula. Feynmans techniques, fubini theorem can sometimes be tedious. When it comes to complex residue theorem we are hundred percent sure we will get the final answer. We have to choose the region properly in a clever way

  • @MrWael1970
    @MrWael1970Ай бұрын

    Thank you for this pretty solution.

  • @vladimir10
    @vladimir10Ай бұрын

    Wow Really satisfying indeed!!

  • @squaretins430
    @squaretins430Ай бұрын

    our boy Kamal bringing out another BANGER of a video!!!

  • @Anonymous-Indian..2003
    @Anonymous-Indian..2003Ай бұрын

    Who else used contour integration ?

  • @MZ-em1rw
    @MZ-em1rwАй бұрын

    Amazing ❤

  • @user-nr8hf4vb5n
    @user-nr8hf4vb5nАй бұрын

    Wow 😮

  • @srikanthtupurani6316
    @srikanthtupurani631619 күн бұрын

    We can use complex analysis contour integrals.

  • @tioulioulatv9332
    @tioulioulatv9332Ай бұрын

    الله يرحم والديك

  • @CM63_France
    @CM63_FranceАй бұрын

    Hi, "ok, cool" : 3:17 , 6:33 , 9:27 , 10:48 , "terribly sorry about that" : 3:42 , 5:25 , 9:13 .

  • @xizar0rg
    @xizar0rgАй бұрын

    While I am not so froggy as to seek out integrals to handle on my own, I do appreciate the ability to see a lot of the techniques used just by eyeballing the function in the thumbnail. Some of your substitutions are still wild, but I've experienced far fewer "how the hell did he come up with that" moments. I guess having watched your channel from the start has done something. (well, minus the physics stuff... with apologies)

  • @edmundwoolliams1240
    @edmundwoolliams1240Ай бұрын

    I'm guessing the substitution u=1/(1+x^2) is needed here? 😂

  • @emanuellandeholm5657
    @emanuellandeholm5657Ай бұрын

    Oh look: It's the "Tangent double half-angle substitution". :D

  • @dogukanbirinci2099
    @dogukanbirinci2099Ай бұрын

    AMAZİNG

  • @7yamkr
    @7yamkrАй бұрын

    Can you tell me a book which contains these types of integrals along with solutions?

  • @Mathematician6124
    @Mathematician6124Ай бұрын

    Hey Friend 😊. I found something terrible. Go to 2:24 Int - pi/2 to pi/2 e^(sinxcosx) cos(cos^2 x) dx Int - pi/2 to pi/2, e^(1/2 sin(2x)) cos(1/2 + 1/2 cos2x) dx Let, I(a) = int - pi/2 to pi/2, e^(a/2 sin(2x)) cos(1/2 + a/2 cos2x) dx I'(a) = 1/2 int - pi/2 to pi/2, e^( a/2 sin(2x)) sin( 2x - (1+acos2x)/2 ) Convert sin(***) into polar form, I'(a) = 1/2 int -pi/2 to pi/2 e^(a/2 sin2x) img{ e^(2ix) * e^-i( (1+acos2x)/2 )} dx =1/2 img int - pi/2 to pi/2, e^(a/2 sin2x) e^(2ix) e^-i(( 1 +acos2x) /2) =1/2a img int - pi/2 to pi/2, e^-i/2 e^{-ia/2 ( e^2ix)} (-ia/2) (2i) e^2ix dx Take - ia/2 e^(2ix)= z we shall find it's just intgrl 1/2a img (e^z dz) = 1/2a img [ e^{ - ia/2 (e^2ix)}] put limits (pi/2, -pi/2) = 1/2a img [ e^{ - ia/2 e^ipi} - e^{ - ia/2 e^-ipi}] =0 Cuz, We know e^ipi=-1, and e^-ipi=-1 too So, I'(a) =1/2 img(0) =0 I(a) =C =I(0)=pi cos(1/2)=I(1) =I(💙)=I(kamaal) For every real a, I(a) has a fixed value of pi cos(1/2)

  • @BurningShipFractal
    @BurningShipFractalАй бұрын

    Wtf there’s no title picture Edit : I reloaded and there now is. My pc bugging

  • @lakshya4876

    @lakshya4876

    Ай бұрын

    Dont worry, the thumbnail is just *imaginary*

  • @aymenstorm3087
    @aymenstorm3087Ай бұрын

    Can we use the SE-METHOD ?

  • @Chris_387
    @Chris_387Ай бұрын

    Make the denominator another integral in terms of e^x take real part to make cosx in terms of e^x and proceed

  • @giuseppemalaguti435
    @giuseppemalaguti435Ай бұрын

    Ho fatto come te,ma poi mi sono bloccato su I1,perché avevo indici di integrazioni diversi..ho sistemato gli indici di integrazione e risulta πcos(1/2)

  • @tomasstride9590
    @tomasstride9590Ай бұрын

    I like to try these having looked only at the thumbnail. I also only like to try theorem if I can use contour integration. This is what I did and I did in fact get your solution. The integrand simplifies to Re exp(1/(z+i))/(z**2+1). Close the contour in the lower half plane and use the pole at -i. I think this is all valid as the integrand vanishes like 1/z**2 on the big semicircle. What do you think?

  • @maths_505

    @maths_505

    Ай бұрын

    Reasoning is on point and I like your solution development.

  • @Mathematician6124

    @Mathematician6124

    Ай бұрын

    ​@@maths_505hey friend have you seen my solution?? 😊

  • @maths_505

    @maths_505

    Ай бұрын

    I believe I have

  • @maths_505

    @maths_505

    Ай бұрын

    It was excellent

  • @Mathematician6124

    @Mathematician6124

    Ай бұрын

    @@maths_505 thank you so much friend. 😊 May the almighty bless you profusely.

  • @gregwochlik9233
    @gregwochlik9233Ай бұрын

    Stopped the video at 0:16 entered into cheat mode: Off to Desmos to graph the thing to see what it looks like. Performing the absolutely obvious u-substitution. Restarted the video, and it is the wrong u-sub. I had u = x^2 + 1

  • @mangakhoon4517go
    @mangakhoon4517goАй бұрын

    I am a highschooler and this scares me 😣

  • @euler1
    @euler1Ай бұрын

    @10:45 why does the exponential term simplify to 1?

  • @maths_505

    @maths_505

    Ай бұрын

    Use Euler's formula and you'll see why.

  • @priyangshusaraswati4067

    @priyangshusaraswati4067

    Ай бұрын

    Bro you are literally Euler😂

  • @Jalina69
    @Jalina69Ай бұрын

    I am lost at 5:40 for a moment. Where did isin go? Why only real? I need complex analysis(

  • @xizar0rg

    @xizar0rg

    Ай бұрын

    It's nothing to do with complex analysis. There are two functions, Re(arg) and Im(arg) that are essentially "take the Real part" and "take the imaginary part". Since both cos and sin are real valued functions, the only real part of (cos(x) + i * sin(x) ) is just the part attached to the cosine. Since the function in Integral_One (I hate the lack of serifs on the web) is a cosine function, we can sneak in the i * sin so that we can talk about the exponential function (which has a much simpler Taylor expansion) and say "we're just going to be needing the real part in the end". He backtracks it at the end when he extracts the real part to get the cosine out. If the function had been Sin(f(x)), he would have used Im() on exp(f(x)) instead.

  • @jaycash4381
    @jaycash4381Ай бұрын

    I thought I was effective at integrals, but you've shown be greatly otherwise.

  • @joelchristophr3741
    @joelchristophr3741Ай бұрын

    Bro I have another challenge for you! Σ (0 to ∞) ( (r²)/(2^r) ) Give me the correct answer

  • @comdo777
    @comdo777Ай бұрын

    asnwer=1x